首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   12篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   5篇
  2016年   9篇
  2015年   11篇
  2014年   7篇
  2013年   11篇
  2012年   11篇
  2011年   18篇
  2010年   10篇
  2009年   8篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   7篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   3篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1981年   2篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1968年   1篇
排序方式: 共有167条查询结果,搜索用时 328 毫秒
1.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
2.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
3.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
4.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
5.
Vitamin B12 is an essential micronutrient synthesized by microorganisms. Mammals including humans have evolved ways for transport and absorption of this vitamin. Deficiency of vitamin B12 (either due to low intake or polymorphism in genes involved in absorption and intracellular transport of this vitamin) has been associated with various complex diseases. Genome-wide association studies have recently identified several common single nucleotide polymorphisms (SNPs) in fucosyl transferase 2 gene (FUT2) to be associated with levels of vitamin B12—the strongest association was with a non-synonymous SNP rs602662 in this gene. In the present study, we attempted to replicate the association of this SNP (rs602662) in an Indian population since a significant proportion has been reported to have low levels of vitamin B12 in this population. A total of 1146 individuals were genotyped for this SNP using a single base extension method and association with levels of vitamin B12 was assessed in these individuals. Regression analysis was performed to analyze the association considering various confounding factors like for age, sex, diet, hypertension, diabetes mellitus and coronary artery disease status. We found that the SNP rs602662 was significantly associated with the levels of vitamin B12 (p value < 0.0001). We also found that individuals adhering to a vegetarian diet with GG (homozygous major genotype) have significantly lower levels of vitamin B12 in these individuals. Thus, our study reveals that vegetarian diet along with polymorphism in the FUT2 gene may contribute significantly to the high prevalence of vitamin B12 deficiency in India.  相似文献   
6.
This study deals with anilofos tolerance and its mineralization by the common rice field cyanobacterium Synechocystis sp. strain PUPCCC 64. The organism tolerated anilofos up to 25 mg L−1. The herbicide caused inhibitory effects on photosynthetic pigments of the test organism in a dose-dependent manner. The organism exhibited 60, 89, 96, 85 and 79% decrease in chlorophyll a, carotenoids, phycocyanin, allophycocyanin and phycoerythrin, respectively, in 20 mg L−1 anilofos on day six. Activities of superoxide dismutase, catalase and peroxidase increased by 1.04 to 1.80 times over control cultures in presence of 20 mg L−1 anilofos. Glutathione content decreased by 26% while proline content was unaffected by 20 mg L−1 anilofos. The test organism showed intracellular uptake and metabolized the herbicide. Uptake of herbicide by test organism was fast during initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein L−1, pH 8.0 and 30°C. Its growth in phosphate deficient basal medium in the presence of anilofos (2.5 mg L−1) indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphate.  相似文献   
7.
Whole‐genome sequencing‐based bulked segregant analysis (BSA) for mapping quantitative trait loci (QTL) provides an efficient alternative approach to conventional QTL analysis as it significantly reduces the scale and cost of analysis with comparable power to QTL detection using full mapping population. We tested the application of next‐generation sequencing (NGS)‐based BSA approach for mapping QTLs for ascochyta blight resistance in chickpea using two recombinant inbred line populations CPR‐01 and CPR‐02. Eleven QTLs in CPR‐01 and six QTLs in CPR‐02 populations were mapped on chromosomes Ca1, Ca2, Ca4, Ca6 and Ca7. The QTLs identified in CPR‐01 using conventional biparental mapping approach were used to compare the efficiency of NGS‐based BSA in detecting QTLs for ascochyta blight resistance. The QTLs on chromosomes Ca1, Ca4, Ca6 and Ca7 overlapped with the QTLs previously detected in CPR‐01 using conventional QTL mapping method. The QTLs on chromosome Ca4 were detected in both populations and overlapped with the previously reported QTLs indicating conserved region for ascochyta blight resistance across different chickpea genotypes. Six candidate genes in the QTL regions identified using NGS‐based BSA on chromosomes Ca2 and Ca4 were validated for their association with ascochyta blight resistance in the CPR‐02 population. This study demonstrated the efficiency of NGS‐based BSA as a rapid and cost‐effective method to identify QTLs associated with ascochyta blight in chickpea.  相似文献   
8.
Muscle insulin resistance develops when plasma free fatty acids (FFAs) are acutely increased to supraphysiological levels (approximately 1,500-4,000 micromol/l). However, plasma FFA levels >1,000 micromol/l are rarely observed in humans under usual living conditions, and it is unknown whether insulin action may be impaired during a sustained but physiological FFA increase to levels seen in obesity and type 2 diabetes mellitus (T2DM) (approximately 600-800 micromol/l). It is also unclear whether normal glucose-tolerant subjects with a strong family history of T2DM (FH+) would respond to a low-dose lipid infusion as individuals without any family history of T2DM (CON). To examine these questions, we studied 7 FH+ and 10 CON subjects in whom we infused saline (SAL) or low-dose Liposyn (LIP) for 4 days. On day 4, a euglycemic insulin clamp with [3-3H]glucose and indirect calorimetry was performed to assess glucose turnover, combined with vastus lateralis muscle biopsies to examine insulin signaling. LIP increased plasma FFA approximately 1.5-fold, to levels seen in T2DM. Compared with CON, FH+ were markedly insulin resistant and had severely impaired insulin signaling in response to insulin stimulation. LIP in CON reduced insulin-stimulated glucose disposal (Rd) by 25%, insulin-stimulated insulin receptor tyrosine phosphorylation by 17%, phosphatidylinositol 3-kinase activity associated with insulin receptor substrate-1 by 20%, and insulin-stimulated glycogen synthase fractional velocity over baseline (44 vs. 15%; all P < 0.05). In contrast to CON, a physiological elevation in plasma FFA in FH+ led to no further deterioration in Rd or to any additional impairment of insulin signaling. In conclusion, a 4-day physiological increase in plasma FFA to levels seen in obesity and T2DM impairs insulin action/insulin signaling in CON but does not worsen insulin resistance in FH+. Whether this lack of additional deterioration in insulin signaling in FH+ is due to already well-established lipotoxicity, or to other molecular mechanisms related to insulin resistance that are nearly maximally expressed early in life, remains to be determined.  相似文献   
9.
Two forms of the growth hormone-releasing hormone (GHRH) receptor (GHRH-R) exist in terms of a polymorphism at codon 57. The most common allele possesses GCG, coding for Ala. This codon can also be ACG, replacing the Ala with Thr. The present study demonstrates that the latter occurs in about 20% of pituitary somatotrophinomas, removed from patients with acromegaly. Somatotrophinomas possessing the alternative allele respond, on average, more strongly to GHRH in terms of GH secretion in vitro than tumors which are homozygous for the more common allele. The distribution of the two allelic forms of the GHRH-R did not significantly differ between acromegalic and non-acromegalic subjects. Thus, while the alternative allelic forms may, at least partially, contribute to the variable response of serum GH levels to i.v. GHRH observed in acromegalic and normal subjects, it is unlikely that subjects possessing the rarer form containing Thr in place of Ala at residue 57 are at increased risk of developing acromegaly.  相似文献   
10.
To investigate the effect of elevated plasma free fatty acid (FFA) concentrations on splanchnic glucose uptake (SGU), we measured SGU in nine healthy subjects (age, 44 +/- 4 yr; body mass index, 27.4 +/- 1.2 kg/m(2); fasting plasma glucose, 5.2 +/- 0.1 mmol/l) during an Intralipid-heparin (LIP) infusion and during a saline (Sal) infusion. SGU was estimated by the oral glucose load (OGL)-insulin clamp method: subjects received a 7-h euglycemic insulin (100 mU x m(-2) x min(-1)) clamp, and a 75-g OGL was ingested 3 h after the insulin clamp was started. After glucose ingestion, the steady-state glucose infusion rate (GIR) during the insulin clamp was decreased to maintain euglycemia. SGU was calculated by subtracting the integrated decrease in GIR during the period after glucose ingestion from the ingested glucose load. [3-(3)H]glucose was infused during the initial 3 h of the insulin clamp to determine rates of endogenous glucose production (EGP) and glucose disappearance (R(d)). During the 3-h euglycemic insulin clamp before glucose ingestion, R(d) was decreased (8.8 +/- 0.5 vs. 7.6 +/- 0.5 mg x kg(-1) x min(-1), P < 0.01), and suppression of EGP was impaired (0.2 +/- 0.04 vs. 0.07 +/- 0.03 mg x kg(-1) x min(-1), P < 0.01). During the 4-h period after glucose ingestion, SGU was significantly increased during the LIP vs. Sal infusion study (30 +/- 2 vs. 20 +/- 2%, P < 0.005). In conclusion, an elevation in plasma FFA concentration impairs whole body glucose R(d) and insulin-mediated suppression of EGP in healthy subjects but augments SGU.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号