首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2018年   1篇
  2016年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
排序方式: 共有12条查询结果,搜索用时 546 毫秒
1.
Cell motility is controlled by the dynamic cytoskeleton and its related proteins, such as members of the ezrin/radixin/moesin (ERM) family, which act as signalling molecules inducing cytoskeleton remodelling. Although ERM proteins have been identified as important factors in various malignancies, functional redundancy between these proteins has hindered the dissection of their individual contribution. The aim of the present study was to analyse the functional role of moesin in pancreatic malignancies. Cancer cells of different malignant lesions of human and transgenic mice pancreata were evaluated by immunohistochemistry. For functional analysis, cell growth, adhesion and invasion assays were carried out after transient and stable knock‐down of moesin expression in pancreatic cancer cells. In vivo tumourigenicity was determined using orthotopic and metastatic mouse tumour models. We now show that moesin knock‐down increases migration, invasion and metastasis and influences extracellular matrix organization of pancreatic cancer. Moesin‐regulated migratory activities of pancreatic cancer cells were in part promoted through cellular translocation of β‐catenin, and re‐distribution and organization of the cytoskeleton. Analysis of human and different transgenic mouse pancreatic cancers demonstrated that moesin is a phenotypic marker for anaplastic carcinoma, suggesting that this ERM protein plays a specific role in pancreatic carcinogenesis.  相似文献   
2.
Persistent pulmonary hypertension of the newborn (PPHN) is associated with decreased blood vessel density that contributes to increased pulmonary vascular resistance. Previous studies showed that uncoupled endothelial nitric oxide (NO) synthase (eNOS) activity and increased NADPH oxidase activity resulted in marked decreases in NO bioavailability and impaired angiogenesis in PPHN. In the present study, we hypothesize that loss of tetrahydrobiopterin (BH4), a critical cofactor for eNOS, induces uncoupled eNOS activity and impairs angiogenesis in PPHN. Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with PPHN (HTFL-PAEC) or control lambs (NFL-PAEC) were used to investigate the cellular mechanisms impairing angiogenesis in PPHN. Cellular mechanisms were examined with respect to BH4 levels, GTP-cyclohydrolase-1 (GCH-1) expression, eNOS dimer formation, and eNOS-heat shock protein 90 (hsp90) interactions under basal conditions and after sepiapterin (Sep) supplementation. Cellular levels of BH4, GCH-1 expression, and eNOS dimer formation were decreased in HTFL-PAEC compared with NFL-PAEC. Sep supplementation decreased apoptosis and increased in vitro angiogenesis in HTFL-PAEC and ex vivo pulmonary artery sprouting angiogenesis. Sep also increased cellular BH4 content, NO production, eNOS dimer formation, and eNOS-hsp90 association and decreased the superoxide formation in HTFL-PAEC. These data demonstrate that Sep improves NO production and angiogenic potential of HTFL-PAEC by recoupling eNOS activity. Increasing BH4 levels via Sep supplementation may be an important therapy for improving eNOS function and restoring angiogenesis in PPHN.  相似文献   
3.
4.
5.
We demonstrated previously that Cr(VI) is readily reduced to oxoCr(V)-diols at the surface of Arthrobacter oxydans—a Gram-positive aerobic bacteria isolated from Columbia basalt rocks originated from a highly contaminated site in the USA. Here, we report an electron spin resonance (ESR) study of Cr(III) hydroxide formation from Cr(V)-diols by this bacterial strain as cells were exposed to 35, 200, and 400 mg/L of Cr(VI) under aerobic conditions as a batch culture and as lyophilized cells. The time-dependent ESR measurements show that the half-time of Cr(III) formation is almost equal to that of Cr(V) decomposition, which is in the range of 3–6 days for all cases. This rate is at least 300 times slower than that of Cr(V) formation. Additionally, atomic absorption spectrometry was also employed to examine the time course of total chromium in bacterial cells. This is the first time the kinetics of Cr(III) complexes formation in bacteria is evaluated.  相似文献   
6.

Background

Independent genome-wide association studies (GWAS) showed an obesogenic effect of two single nucleotide polymorphisms (SNP; rs12970134 and rs17782313) more than 150 kb downstream of the melanocortin 4 receptor gene (MC4R). It is unclear if the SNPs directly influence MC4R function or expression, or if the SNPs are on a haplotype that predisposes to obesity or includes functionally relevant genetic variation (synthetic association). As both exist, functionally relevant mutations and polymorphisms in the MC4R coding region and a robust association downstream of the gene, MC4R is an ideal model to explore synthetic association.

Methodology/Principal Findings

We analyzed a genomic region (364.9 kb) encompassing the MC4R in GWAS data of 424 obesity trios (extremely obese child/adolescent and both parents). SNP rs12970134 showed the lowest p-value (p = 0.004; relative risk for the obesity effect allele: 1.37); conditional analyses on this SNP revealed that 7 of 78 analyzed SNPs provided independent signals (p≤0.05). These 8 SNPs were used to derive two-marker haplotypes. The three best (according to p-value) haplotype combinations were chosen for confirmation in 363 independent obesity trios. The confirmed obesity effect haplotype includes SNPs 3′ and 5′ of the MC4R. Including MC4R coding variants in a joint model had almost no impact on the effect size estimators expected under synthetic association.

Conclusions/Significance

A haplotype reaching from a region 5′ of the MC4R to a region at least 150 kb from the 3′ end of the gene showed a stronger association to obesity than single SNPs. Synthetic association analyses revealed that MC4R coding variants had almost no impact on the association signal. Carriers of the haplotype should be enriched for relevant mutations outside the MC4R coding region and could thus be used for re-sequencing approaches. Our data also underscore the problems underlying the identification of relevant mutations depicted by GWAS derived SNPs.  相似文献   
7.
Chromium(V) is an intermediate formed during the reduction of Cr(VI) to Cr(III) compounds by various bacteria. However, little is known about the nature, localization and reactivity of Cr(V) species in microbial systems. Electron paramagnetic resonance (EPR) spectroscopy was used to study the nature of Cr(V) complexes generated in basalt-inhabiting Gram-positive Arthrobacter oxydans bacteria after exposure to high concentrations of Cr(VI). Numerical simulations of the EPR spectroscopic data provide strong evidence for at least two different diolato-type oxoCr(V) complexes (I, g(iso)=1.9801; II, g(iso)=1.9796) involving bacterial cell wall macromolecules in the Cr(VI)-A. oxydans system. The relative concentrations of the two oxoCr(V)-diolato species differ when Cr(VI) is incubated with either untreated A. oxydans cells (I:II approximately 50:50) or lyophilized cells (I:II approximately 10:90). Based upon the magnitudes of the proton superhyperfine coupling constants ((1)H a(iso)) for species I and II, the EPR simulation model is unable to distinguish unambiguously whether the oxoCr(V)-diolato species are linear alkoxides or cyclic diols (carbohydrates). The oxygen-containing functional groups associated with teichoic acids are the most likely candidates for complexation with the Cr(V) ion.  相似文献   
8.
Persistent pulmonary hypertension of newborn (PPHN) is associated with decreased NO release and impaired pulmonary vasodilation. We investigated the hypothesis that increased superoxide (O(2)(*-)) release by an uncoupled endothelial nitric oxide synthase (eNOS) contributes to impaired pulmonary vasodilation in PPHN. We investigated the response of isolated pulmonary arteries to the NOS agonist ATP and the NO donor S-nitroso-N-acetylpenicillamine (SNAP) in fetal lambs with PPHN induced by prenatal ligation of ductus arteriosus and in sham-ligated controls in the presence or absence of the NOS antagonist nitro-L-arginine methyl ester (L-NAME) or the O(2)(*-) scavenger 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron). ATP caused dose-dependent relaxation of pulmonary artery rings in control lambs but induced constriction of the rings in PPHN lambs. L-NAME, the NO precursor L-arginine, and Tiron restored the relaxation response of pulmonary artery rings to ATP in PPHN. Relaxation to NO was attenuated in arteries from PPHN lambs, and the response was improved by L-NAME and by Tiron. We also investigated the alteration in heat shock protein (HSP)90-eNOS interactions and release of NO and O(2)(*-) in response to ATP in the pulmonary artery endothelial cells (PAEC) from these lambs. Cultured PAEC and endothelium of freshly isolated pulmonary arteries from PPHN lambs released O(2)(*-) in response to ATP, and this was attenuated by the NOS antagonist L-NAME and superoxide dismutase (SOD). ATP stimulated HSP90-eNOS interactions in PAEC from control but not PPHN lambs. HSP90 immunoprecipitated from PPHN pulmonary arteries had increased nitrotyrosine signal. Oxidant stress from uncoupled eNOS contributes to impaired pulmonary vasodilation in PPHN induced by ductal ligation in fetal lambs.  相似文献   
9.
The purine nucleotide ATP mediates pulmonary vasodilation at birth by stimulation of P2Y purine receptors in the pulmonary circulation. The specific P2Y receptors in the pulmonary circulation and the segmental distribution of their responses remain unknown. We investigated the effects of purine nucleotides, ATP, ADP, and AMP, and pyrimidine nucleotides, UTP, UDP, and UMP, in juvenile rabbit pulmonary arteries for functional characterization of P2Y receptors. We also studied the expression of P2Y receptor subtypes in pulmonary arteries and the role of nitric oxide (NO), prostaglandins, and cytochrome P-450 metabolites in the response to ATP. In conduit size arteries, ATP, ADP, and AMP caused greater relaxation responses than UTP, UDP, and UMP. In resistance vessels, ATP and UTP caused comparable vasodilation. The response to ATP was attenuated by the P2Y antagonist cibacron blue, the NO synthase antagonist N(omega)-nitro-l-arginine methyl ester (l-NAME), and the cytochrome P-450 inhibitor 17-octadecynoic acid but not by the P2X antagonist alpha,beta-methylene ATP or the cyclooxygenase inhibitor indomethacin in conduit arteries. In the resistance vessels, l-NAME caused a more complete inhibition of the responses to ATP and UTP. Responses to AMP and UMP were NO and endothelium dependent, whereas responses to ADP and UDP were NO and endothelium independent in the conduit arteries. RT-PCR showed expression of P2Y(1), P2Y(2), and P2Y(4) receptors, but not P2Y(6) receptors, in lung parenchyma, pulmonary arteries, and pulmonary artery endothelial cells. These data suggest that distinct P2Y receptors mediate the vasodilator responses to purine and pyrimidine nucleotides in the juvenile rabbit pulmonary circulation. ATP appears to cause NO-mediated vasodilation predominantly through P2Y2 receptors on endothelium.  相似文献   
10.
The origins of the nearly one billion people inhabiting the Indian subcontinent and following the customs of the Hindu caste system are controversial: are they largely derived from Indian local populations (i.e. tribal groups) or from recent immigrants to India? Archaeological and linguistic evidence support the latter hypothesis, whereas recent genetic data seem to favor the former hypothesis. Here, we analyze the most extensive dataset of Indian caste and tribal Y chromosomes to date. We find that caste and tribal groups differ significantly in their haplogroup frequency distributions; caste groups are homogeneous for Y chromosome variation and more closely related to each other and to central Asian groups than to Indian tribal or any other Eurasian groups. We conclude that paternal lineages of Indian caste groups are primarily descended from Indo-European speakers who migrated from central Asia approximately 3,500 years ago. Conversely, paternal lineages of tribal groups are predominantly derived from the original Indian gene pool. We also provide evidence for bidirectional male gene flow between caste and tribal groups. In comparison, caste and tribal groups are homogeneous with respect to mitochondrial DNA variation, which may reflect the sociocultural characteristics of the Indian caste society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号