首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   7篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1976年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
2.
3.
The handling of hepatocytes, a major cell population in the liver, is an important technique in both liver tissue engineering and hepatology. However, these cells are so fragile that it has been impossible to harvest hepatocytes with high viability from tissue culture dishes after a period of culture in vitro. In this study, we employed an artificial substrate for transfection of multilayer hepatocytes and harvested these cells with high viability after transfection. Hepatocytes cultured on an amphiphilic artificial substrate form multilayer aggregates (spheroids) in the presence of growth factors during gene transfection with cation liposomes. Compared to cells cultured on a collagen-coated plate, these spheroids are easily harvested with high viability by pipetting in EDTA solution. In addition, these spheroids rapidly spread on collagen after transfer from the artificial substrate, demonstrating that hepatocytes in the center of the spheroids were viable. Epidermal growth factor (EGF) increased the transfection efficiency into hepatocytes while hepatocyte growth factor (HGF) alone did not increase the efficiency. However, HGF synergestically increased the effect of EGF on transfection. Interestingly, this transfection required the process of spheroid formation because the gene was not transfected once the spheroid formation completed or under conditions where hepatocytes did not form spheroids. This method using spheroidal hepatocytes for in vitro transfection is promising for the development of ex vivo gene therapy.  相似文献   
4.
Although in vitro replication of the hepatitis C virus (HCV) JFH1 clone of genotype 2a (HCVcc) has been developed, a robust cell culture system for the 1a and 1b genotypes, which are the most prevalent viruses in the world and resistant to interferon therapy, has not yet been established. As a surrogate virus system, pseudotype viruses transiently bearing HCV envelope proteins based on the vesicular stomatitis virus (VSV) and retrovirus have been developed. Here, we have developed a replication-competent recombinant VSV with a genome encoding unmodified HCV E1 and E2 proteins in place of the VSV envelope protein (HCVrv) in human cell lines. HCVrv and a pseudotype VSV bearing the unmodified HCV envelope proteins (HCVpv) generated in 293T or Huh7 cells exhibited high infectivity in Huh7 cells. Generation of infectious HCVrv was limited in some cell lines examined. Furthermore, HCVrv but not HCVpv was able to propagate and form foci in Huh7 cells. The infection of Huh7 cells with HCVpv and HCVrv was neutralized by anti-hCD81 and anti-E2 antibodies and by sera from chronic HCV patients. The infectivity of HCVrv was inhibited by an endoplasmic reticulum alpha-glucosidase inhibitor, N-(n-nonyl) deoxynojirimycin (Nn-DNJ), but not by a Golgi mannosidase inhibitor, deoxymannojirimycin. Focus formation of HCVrv in Huh7 cells was impaired by Nn-DNJ treatment. These results indicate that the HCVrv developed in this study can be used to study HCV envelope proteins with respect to not only the biological functions in the entry process but also their maturation step.  相似文献   
5.
Yeasts that ferment both hexose and pentose are important for cost-effective ethanol production. We found that the soil yeast strain NY7122 isolated from a blueberry field in Tsukuba (East Japan) could ferment both hexose and pentose (d-xylose and l-arabinose). NY7122 was closely related to Candida subhashii on the basis of the results of molecular identification using the sequence in the D1/D2 domains of 26S rDNA and 5.8S-internal transcribed spacer region. NY7122 produced at least 7.40 and 3.86 g l−1 ethanol from 20 g l−1 d-xylose and l-arabinose within 24 h. NY7122 could produce ethanol from pentose and hexose sugars at 37°C. The highest ethanol productivity of NY7122 was achieved under a low pH condition (pH 3.5). Fermentation of mixed sugars (50 g l−1 glucose, 20 g l−1 d-xylose, and 10 g l−1 l-arabinose) resulted in a maximum ethanol concentration of 27.3 g l−1 for the NY7122 strain versus 25.1 g l−1 for Scheffersomyces stipitis. This is the first study to report that Candida sp. NY7122 from a soil environment could produce ethanol from both d-xylose and l-arabinose.  相似文献   
6.
We previously found that 20 mg/kg clozapine i.p. potentiated the excitatory synaptic responses elicited in the dentate gyrus by single electrical stimulation of the perforant path in chronically prepared rabbits. We called this phenomenon clozapine-induced potentiation and proved that it was an NMDA receptor-mediated event. This potentiation is presumably related to clozapine's clinical effect on negative symptoms and cognitive dysfunctions in schizophrenia. In the present study, to investigate the mechanisms underlying clozapine-induced potentiation, we examined whether extracellular dopamine and 5-HT levels changed during the potentiation by using a microdialysis technique in the dentate gyrus. The extracellular concentrations of dopamine and 5-HT levels were measured every 5 min during all experiments. Extracellular 5-HT levels did not change, but dopamine levels eventually increased significantly during clozapine-induced potentiation. The increase in the dopamine levels occurred almost simultaneously with the induction of clozapine-induced potentiation. These results suggest that clozapine-induced potentiation is at least partly attributable to a dopamine-mediated potentiation of excitatory synaptic transmission. The present study implies that such phenomena occur also in the perforant path-dentate gyrus pathway.  相似文献   
7.
In Photosystem II (PSII), the Mn4CaO5-cluster of the active site advances through five sequential oxidation states (S0 to S4) before water is oxidized and O2 is generated. The V185 of the D1 protein has been shown to be an important amino acid in PSII function (Dilbeck et al. Biochemistry 52 (2013) 6824–6833). Here, we have studied its role by making a V185T site-directed mutant in the thermophilic cyanobacterium Thermosynechococcus elongatus. The properties of the V185T-PSII have been compared to those of the WT*3-PSII by using EPR spectroscopy, polarography, thermoluminescence and time-resolved UV–visible absorption spectroscopy. It is shown that the V185 and the chloride binding site very likely interact via the H-bond network linking TyrZ and the halide. The V185 contributes to the stabilization of S2 into the low spin (LS), S?=?1/2, configuration. Indeed, in the V185T mutant a high proportion of S2 exhibits a high spin (HS), S?=?5/2, configuration. By using bromocresol purple as a dye, a proton release was detected in the S1TyrZ?→?S2HSTyrZ transition in the V185T mutant in contrast to the WT*3-PSII in which there is no proton release in this transition. Instead, in WT*3-PSII, a proton release kinetically much faster than the S2LSTyrZ?→?S3TyrZ transition was observed and we propose that it occurs in the S2LSTyrZ?→?S2HSTyrZ intermediate step before the S2HSTyrZ?→?S3TyrZ transition occurs. The dramatic slowdown of the S3TyrZ?→?S0TyrZ transition in the V185T mutant does not originate from a structural modification of the Mn4CaO5 cluster since the spin S?=?3?S3 EPR signal is not modified in the mutant. More probably, it is indicative of the strong implication of V185 in the tuning of an efficient relaxation processes of the H-bond network and/or of the protein.  相似文献   
8.
9.
Enzymatic activation of Cu,Zn-superoxide dismutase (SOD1) requires not only binding of a catalytic copper ion but also formation of an intramolecular disulfide bond. Indeed, the disulfide bond is completely conserved among all species possessing SOD1; however, it remains obscure how disulfide formation controls the enzymatic activity of SOD1. Here, we show that disulfide formation is a primary event in the folding process of prokaryotic SOD1 (SodC) localized to the periplasmic space. Escherichia coli SodC was found to attain β-sheet structure upon formation of the disulfide bond, whereas disulfide-reduced SodC assumed little secondary structure even in the presence of copper and zinc ions. Moreover, reduction of the disulfide bond made SodC highly susceptible to proteolytic degradation. We thus propose that the thiol-disulfide status in SodC controls the intracellular stability of this antioxidant enzyme and that the oxidizing environment of the periplasm is required for the enzymatic activation of SodC.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号