首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2021年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   8篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
2.
We report on two unrelated cases of pericentric inversion 46,XY,inv(7)(p11q21.1) associated with distinct pattern of malformation including mental retardation, development delay, ectrodactyly, facial dismorphism, high arched palate. Additionally, one case was found to be characterized by mesodermal dysplasia. Cytogenetic analysis of the families indicated that one case was a paternally inherited inversion whereas another case was a maternally inherited one. Molecular cytogenetic studies have shown paternal inversion to have a breakpoint within centromeric heterochromatin being the cause of alphoid DNA loss. Maternal inversion was also associated with a breakpoint within centromeric heterochromatin as well as inverted euchromatic chromosome region flanked by two disrupted alphoid DNA blocks. Basing on molecular cytogenetic data we hypothesize the differences of clinical manifestations to be produced by a position effect due to localization of breakpoints within variable centromeric heterochromatin and, alternatively, due to differences in the location breakpoints, disrupteding different genes within region 7q21-q22. Our results reconfirm previous linkage analyses suggested 7q21-q22 as a locus of ectrodactily and propose inv (7)(p11q21.1) as a cause of recognizable pattern of malformations or a new chromosomal syndrome.  相似文献   
3.
Single cell genomics has made increasingly significant contributions to our understanding of the role that somatic genome variations play in human neuronal diversity and brain diseases. Studying intercellular genome and epigenome variations has provided new clues to the delineation of molecular mechanisms that regulate development, function and plasticity of the human central nervous system (CNS). It has been shown that changes of genomic content and epigenetic profiling at single cell level are involved in the pathogenesis of neuropsychiatric diseases (schizophrenia, mental retardation (intellectual/leaning disability), autism, Alzheimer’s disease etc.). Additionally, several brain diseases were found to be associated with genome and chromosome instability (copy number variations, aneuploidy) variably affecting cell populations of the human CNS. The present review focuses on the latest advances of single cell genomics, which have led to a better understanding of molecular mechanisms of neuronal diversity and neuropsychiatric diseases, in the light of dynamically developing fields of systems biology and “omics”.  相似文献   
4.
Despite the lack of direct cytogenetic studies, the neuronal cells of the normal human brain have been postulated to contain normal (diploid) chromosomal complement. Direct proof of a chromosomal mutation presence leading to large-scale genomic alterations in neuronal cells has been missing in the human brain. Large-scale genomic variations due to chromosomal complement instability in developing neuronal cells may lead to the variable level of chromosomal mosaicism probably having a substantial effect on brain development. The aim of the present study was the pilot assessment of chromosome complement variations in neuronal cells of developing and adult human brain tissues using interphase multicolor fluorescence in situ hybridization (mFISH). Chromosome-enumerating DNA probes from the original collection (chromosomes 1, 13 and 21, 18, X, and Y) were used for the present pilot FISH study. As a source of fetal brain tissue, the medulla oblongata was used. FISH studies were performed using uncultured fetal brain samples as well as organotypic cultures of medulla oblongata tissue. Cortex tissues of postmortem adult brain samples (Brodmann area 10) were also studied. In cultured in vitro embryonic neuronal brain cells, an increased level of aneuploidy was found (mean rate in the range of 1.3-7.0% per individual chromosome, in contrast to 0.6-3.0% and 0.1-0.8% in uncultured fetal and postmortem adult brain cells, respectively). The data obtained support the hypothesis regarding aneuploidy occurrence in normal developing and adult human brain.  相似文献   
5.
We report on a case of chimerism and multiple abnormalities of chromosomes 21, Xand Yin spontaneous abortion specimen. To the best our knowledge the present case is the first documented chimera in a spontaneously aborted fetus. The application of interphase fluorescence in situ hybridization (FISH) using chromosome enumeration and site-specific DNA probes showed trisomy X in 92 nuclei (23 %), tetrasomy X in 100 nuclei (25 %), pentasomy of chromosome X in 40 nuclei (10 %), XXY in 36 nuclei (9 %), XXXXXXYY in 12 nuclei (3 %), XXXXXYYYYY in 8 nuclei (2 %), trisomy 21 and female chromosome complement in 40 nuclei (10 %), normal female chromosome complement in 72 nuclei (18 %) out of 400 nuclei scored. Our experience indicates that the frequency of chimerism coupled with multiple chromosome abnormalities should be no less than 1 : 400 among spontaneous abortions. The difficulties of chimerism identification in fetal tissues are discussed.  相似文献   
6.
The human genome demonstrates variable levels of instability during ontogeny. Achieving the highest rate during early prenatal development, it decreases significantly throughout following ontogenetic stages. A failure to decrease or a spontaneous increase of genomic instability can promote infertility, pregnancy losses, chromosomal and genomic diseases, cancer, immunodeficiency, or brain diseases depending on developmental stage at which it occurs. Paradoxically, late ontogeny is associated with increase of genomic instability that is considered a probable mechanism for human aging. The latter is even more appreciable in human diseases associated with pathological or accelerated aging (i.e. Alzheimer's disease and ataxia-telangiectasia). These observations resulted in a hypothesis suggesting that somatic genomic variations throughout ontogeny are determinants of cellular vitality in health and disease including intrauterine development, postnatal life and aging. The most devastative effect of somatic genome variations is observed when it manifests as chromosome instability or aneuploidy, which has been repeatedly noted to produce pathologic conditions and to mediate developmental regulatory and aging processes. However, no commonly accepted concepts on the role of chromosome/genome instability in determination of human health span and life span are available. Here, a review of these ontogenetic variations is given to propose a new "dynamic genome" model for pathological and natural genomic changes throughout life that mimic those of phylogenetic diversity.  相似文献   
7.
Recently, the human brain has been found to exhibit high levels of somatic mosaicism. On the one hand this has been shown to be age associated, on the other hand mosaicism in the brain was shown to be a mechanism for neurologic and psychiatric disorders (i. e. Alzheimer’s disease and schizophrenia). Thus, a possibility to use this knowledge for the preclinical diagnosis was proposed. Since correlations between patterns of somatic mosaicism in mitotic cells and in post-mitotic neural cells have been described, one can suggest molecular cytogenetic analysis of somatic genome variations in biopsies to have potential diagnostic importance. Finally, detecting alterations to molecular pathways protecting cells from genome or chromosome instability seems to be another promising way for future diagnostic applications in brain diseases.  相似文献   
8.
Numerical chromosomal imbalances are a common feature of spontaneous abortions. However, the incidence of mosaic forms of chromosomal abnormalities has not been evaluated. We have applied interphase multicolor fluorescence in situ hybridization using original DNA probes for chromosomes 1, 9, 13, 14, 15, 16, 18, 21, 22, X, and Y to study chromosomal abnormalities in 148 specimens of spontaneous abortions. We have detected chromosomal abnormalities in 89/148 (60.1%) of specimens. Among them, aneuploidy was detected in 74 samples (83.1%). In the remaining samples, polyploidy was detected. The mosaic forms of chromosome abnormality, including autosomal and sex chromosomal aneuploidies and polyploidy (31 and 12 cases, respectively), were observed in 43/89 (48.3%) of specimens. The most frequent mosaic form of aneuploidy was related to chromosome X (19 cases). The frequency of mosaic forms of chromosomal abnormalities in samples with male chromosomal complement was 50% (16/32 chromosomally abnormal), and in samples with female chromosomal complement, it was 47.4% (27/57 chromosomally abnormal). The present study demonstrates that the postzygotic or mitotic errors leading to chromosomal mosaicism in spontaneous abortions are more frequent than previously suspected. Chromosomal mosaicism may contribute significantly to both pregnancy complications and spontaneous fetal loss.  相似文献   
9.
Prion diseases comprise a group of fatal neurodegenerative disorders characterized by the autocatalytic conversion of the cellular prion protein PrPC into the infectious misfolded isoform PrPSc. Increasing evidence supports a specific role of oxidative stress in the onset of pathogenesis. Although the associated molecular mechanisms remain to be elucidated in detail, several studies currently suggest that methionine oxidation already detected in misfolded PrPSc destabilizes the native PrP fold as an early event in the conversion pathway. To obtain more insights about the specific impact of surface-exposed methionine residues on the oxidative-induced conversion of human PrP we designed, produced, and comparatively investigated two new pseudosulfoxidation mutants of human PrP 121–231 that comprises the well-folded C-terminal domain. Applying circular dichroism spectroscopy and dynamic light scattering techniques we showed that pseudosulfoxidation of all surface exposed Met residues formed a monomeric molten globule-like species with striking similarities to misfolding intermediates recently reported by other groups. However, individual pseudosulfoxidation at the polymorphic M129 site did not significantly contribute to the structural destabilization. Further metal-induced oxidation of the partly unfolded pseudosulfoxidation mutant resulted in the formation of an oligomeric state that shares a comparable size and stability with PrP oligomers detected after the application of different other triggers for structural conversion, indicating a generic misfolding pathway of PrP. The obtained results highlight the specific importance of methionine oxidation at surface exposed residues for PrP misfolding, strongly supporting the hypothesis that increased oxidative stress could be one causative event for sporadic prion diseases and other neurodegenerative disorders.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号