首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   7篇
  2021年   3篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1989年   1篇
  1979年   1篇
排序方式: 共有26条查询结果,搜索用时 187 毫秒
1.
Diabetes mellitus currently affects 346 million individuals and this is projected to increase to 400 million by 2030. Evidence from both the laboratory and large scale clinical trials has revealed that diabetic complications progress unimpeded via the phenomenon of metabolic memory even when glycemic control is pharmaceutically achieved. Gene expression can be stably altered through epigenetic changes which not only allow cells and organisms to quickly respond to changing environmental stimuli but also confer the ability of the cell to "memorize" these encounters once the stimulus is removed. As such, the roles that these mechanisms play in the metabolic memory phenomenon are currently being examined.We have recently reported the development of a zebrafish model of type I diabetes mellitus and characterized this model to show that diabetic zebrafish not only display the known secondary complications including the changes associated with diabetic retinopathy, diabetic nephropathy and impaired wound healing but also exhibit impaired caudal fin regeneration. This model is unique in that the zebrafish is capable to regenerate its damaged pancreas and restore a euglycemic state similar to what would be expected in post-transplant human patients. Moreover, multiple rounds of caudal fin amputation allow for the separation and study of pure epigenetic effects in an in vivo system without potential complicating factors from the previous diabetic state. Although euglycemia is achieved following pancreatic regeneration, the diabetic secondary complication of fin regeneration and skin wound healing persists indefinitely. In the case of impaired fin regeneration, this pathology is retained even after multiple rounds of fin regeneration in the daughter fin tissues. These observations point to an underlying epigenetic process existing in the metabolic memory state. Here we present the methods needed to successfully generate the diabetic and metabolic memory groups of fish and discuss the advantages of this model.  相似文献   
2.
The proximal region in the 5' external transcribed spacer (5'ETS) of the genes encoding ribosomal RNAs in Schizosaccharomyces pombe was examined with respect to structural features which underlie rRNA maturation. Computer analyses and partial digestion with nuclease probes indicate a crucifix-like structure composed primarily of three extended hairpins which are more highly ordered than previously proposed in Saccharomyces cerevisiae. A re-evaluation of the same region in S. cerevisiae indicates a conserved core structure, including the U3 snoRNA binding site within this higher-order structure. The sequences encoding the individual hairpins were deleted by PCR-mediated mutagenesis and the mutant rDNAs were expressed in vivo to determine the effect of these features on rRNA maturation. Quantitative hybridization analyses indicate that the first hairpin only has modest effects on 18 S rRNA maturation, but the other two regions are critical and no mature 18 S rRNA was observed. When smaller changes were systematically introduced into the critical regions, strong correlations were observed with known or putative events in rRNA maturation. Changes associated with an intermediate cleavage site in helix II and with the putative U3 snoRNA binding site were again critical to 18 S rRNA production. In each case, the effects were sequence dependent and not simply the result of disrupted structure. Further analyses of the 5.8 S rRNA indicate that the large ribosomal subunit RNA can be properly processed in each case but the efficiency is reduced by as much as 60 %, an observation which provides new evidence of interdependency in the maturation process. The results illustrate that rRNA processing is more critically dependent on the 5'ETS than previously believed.  相似文献   
3.
Behavioral and neuropathological changes have been widely investigated in murine prion disease but stereological based unbiased estimates of key neuropathological features have not been carried out. After injections of ME7 infected (ME7) or normal brain homogenates (NBH) into dorsal CA1 of albino Swiss mice and C57BL6, we assessed behavioral changes on hippocampal-dependent tasks. We also estimated by optical fractionator at 15 and 18 weeks post-injections (w.p.i.) the total number of neurons, reactive astrocytes, activated microglia and perineuronal nets (PN) in the polymorphic layer of dentate gyrus (PolDG), CA1 and septum in albino Swiss mice. On average, early behavioral changes in albino Swiss mice start four weeks later than in C57BL6. Cluster and discriminant analysis of behavioral data in albino Swiss mice revealed that four of nine subjects start to change their behavior at 12 w.p.i. and reach terminal stage at 22 w.p.i and the remaining subjects start at 22 w.p.i. and reach terminal stage at 26 w.p.i. Biotinylated dextran-amine BDA-tracer experiments in mossy fiber pathway confirmed axonal degeneration and stereological data showed that early astrocytosis, microgliosis and reduction in the perineuronal nets are independent of a change in the number of neuronal cell bodies. Statistical analysis revealed that the septal region had greater levels of neuroinflammation and extracellular matrix damage than CA1. This stereological and multivariate analysis at early stages of disease in an outbred model of prion disease provided new insights connecting behavioral changes and neuroinflammation and seems to be important to understand the mechanisms of prion disease progression.Key words: prion disease, optical fractionator, neuropathology, behavioral changes, albino Swiss mice  相似文献   
4.
5.
6.
7.
La is an RNA-processing-associated phosphoprotein so highly conserved that the human La protein (hLa) can replace the tRNA-processing function of the fission yeast La protein (Sla1p) in vivo. La proteins contain multiple trafficking elements that support interactions with RNAs in different subcellular locations. Prior data indicate that deletion of a nuclear retention element (NRE) causes nuclear export of La and dysfunctional processing of associated pre-tRNAs that are spliced but 5' and 3' unprocessed, with an accompanying decrease in tRNA-mediated suppression, in fission yeast. To further pursue these observations, we first identified conserved residues in the NREs of hLa and Sla1p that when substituted mimic the NRE deletion phenotype. NRE-defective La proteins then deleted of other motifs indicated that RNA recognition motif 1 (RRM1) is required for nuclear export. Mutations of conserved RRM1 residues restored nuclear accumulation of NRE-defective La proteins. Some RRM1 mutations restored nuclear accumulation, prevented disordered pre-tRNA processing, and restored suppression, indicating that the tRNA-related activity of RRM1 and its nuclear export activity could be functionally separated. When mapped onto an hLa structure, the export-sensitive residues comprised surfaces distinct from the RNA-binding surface of RRM1. The data indicate that the NRE has been conserved to mask or functionally override an equally conserved nuclear export activity of RRM1. The data suggest that conserved elements mediate nuclear retention, nuclear export, and RNA-binding activities of the multifunctional La protein and that their interrelationship contributes to the ability of La to engage its different classes of RNA ligands in different cellular locations.  相似文献   
8.
We developed a broad-ranging method for identifying key hydrogen-producing and consuming microorganisms through analysis of hydrogenase gene content and expression in complex anaerobic microbial communities. The method is based on a tiling hydrogenase gene oligonucleotide DNA microarray (Hydrogenase Chip), which implements a high number of probes per gene by tiling probe sequences across genes of interest at 1.67 × –2 × coverage. This design favors the avoidance of false positive gene identification in samples of DNA or RNA extracted from complex microbial communities. We applied this technique to interrogate interspecies hydrogen transfer in complex communities in (i) lab-scale reductive dehalogenating microcosms enabling us to delineate key H2-consuming microorganisms, and (ii) hydrogen-generating microbial mats where we found evidence for significant H2 production by cyanobacteria. Independent quantitative PCR analysis on selected hydrogenase genes showed that this Hydrogenase Chip technique is semiquantitative. We also determined that as microbial community complexity increases, specificity must be traded for sensitivity in analyzing data from tiling DNA microarrays.  相似文献   
9.
By sequence-specific binding to 3' UUU-OH, the La protein shields precursor (pre)-RNAs from 3' end digestion and is required to protect defective pre-transfer RNAs from decay. Although La is comprised of a La motif and an RNA-recognition motif (RRM), a recent structure indicates that the RRM beta-sheet surface is not involved in UUU-OH recognition, raising questions as to its function. Progressively defective suppressor tRNAs in Schizosaccharomyces pombe reveal differential sensitivities to La and Rrp6p, a 3' exonuclease component of pre-tRNA decay. 3' end protection is compromised by mutations to the La motif but not the RRM surface. The most defective pre-tRNAs require a second activity of La, in addition to 3' protection, that requires an intact RRM surface. The two activities of La in tRNA maturation map to its two conserved RNA-binding surfaces and suggest a modular model that has implications for its other ligands.  相似文献   
10.

Background

Limited knowledge exists on early HIV events that may inform preventive and therapeutic strategies. This study aims to characterize the earliest immunologic and virologic HIV events following infection and investigates the usage of a novel therapeutic strategy.

Methods and Findings

We prospectively screened 24,430 subjects in Bangkok and identified 40 AHI individuals. Thirty Thais were enrolled (8 Fiebig I, 5 Fiebig II, 15 Fiebig III, 2 Fiebig IV) of whom 15 completed 24 weeks of megaHAART (tenofovir/emtricitabine/efavirenz/raltegravir/maraviroc). Sigmoid biopsies were completed in 24/30 at baseline and 13/15 at week 24.At baseline, the median age was 29 years and 83% were MSM. Most were symptomatic (87%), and were infected with R5-tropic (77%) CRF01_AE (70%). Median CD4 was 406 cells/mm3. HIV RNA was 5.5 log10 copies/ml. Median total blood HIV DNA was higher in Fiebig III (550 copy/106 PBMC) vs. Fiebig I (8 copy/106 PBMC) (p = 0.01) while the median %CD4+CCR5+ gut T cells was lower in Fiebig III (19%) vs. Fiebig I (59%) (p = 0.0008).After 24 weeks of megaHAART, HIV RNA levels of <50 copies were achieved in 14/15 in blood and 13/13 in gut. Total blood HIV DNA at week 0 predicted reservoir size at week 24 (p<0.001). Total HIV DNA declined significantly and was undetectable in 3 of 15 in blood and 3 of 7 in gut. Frequency of CD4+CCR5+ gut T cells increased from 41% at baseline to 64% at week 24 (p>0.050); subjects with less than 40% at baseline had a significant increase in CD4+CCR5+ T cells from baseline to week 24 (14% vs. 71%, p = 0.02).

Conclusions

Gut T cell depletion and HIV reservoir seeding increases with progression of AHI. MegaHAART was associated with immune restoration and reduced reservoir size. Our findings could inform research on strategies to achieve HIV drug-free remission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号