首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11239篇
  免费   1126篇
  国内免费   3篇
  2023年   57篇
  2021年   201篇
  2020年   161篇
  2019年   211篇
  2018年   231篇
  2017年   241篇
  2016年   383篇
  2015年   610篇
  2014年   615篇
  2013年   783篇
  2012年   840篇
  2011年   769篇
  2010年   593篇
  2009年   478篇
  2008年   610篇
  2007年   560篇
  2006年   489篇
  2005年   511篇
  2004年   492篇
  2003年   466篇
  2002年   434篇
  2001年   158篇
  2000年   129篇
  1999年   165篇
  1998年   119篇
  1997年   100篇
  1996年   95篇
  1995年   89篇
  1994年   75篇
  1993年   75篇
  1992年   113篇
  1991年   91篇
  1990年   98篇
  1989年   93篇
  1988年   92篇
  1987年   70篇
  1986年   71篇
  1985年   69篇
  1984年   65篇
  1983年   72篇
  1982年   70篇
  1981年   61篇
  1980年   53篇
  1979年   49篇
  1978年   46篇
  1977年   45篇
  1976年   40篇
  1975年   42篇
  1974年   36篇
  1973年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
The effects of prostaglandin E1 (PGE1) on the phenotypic state of enzymatically isolated arterial smooth-muscle cells in primary culture were studied by transmission electron microscopy, thymidine autoradiography, and cell counting. Early in culture (day 0-2), PGE1 stimulated conversion of the cells from contractile (less euchromatic nucleus and cytoplasm dominated by myofilament bundles) to synthetic state (more euchromatic nucleus and cytoplasm dominated by cisternae of rough endoplasmic reticulum and a large Golgi complex). The rate of entrance of the cells into DNA synthesis and mitosis was also increased at this time. Later on (day 3-6), when the majority of the cells had entered synthetic state, PGE1 inhibited DNA synthesis and cellular proliferation. These observations indicate that the effect of prostaglandins on arterial smooth muscle is dual in nature and dependent on the state of differentiation of the cells.  相似文献   
3.
Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.  相似文献   
4.
The Na‐ion battery is recognized as a possible alternative to the Li‐ion battery for applications where power and cost override energy density performance. However, the increasing instability of their electrolyte with temperature is still problematic. Thus, a central question remains how to design Na‐based electrolytes. Here, the discovery of a Na‐based electrolyte formulation is reported which enlists four additives (vinylene carbonate, succinonitrile, 1,3‐propane sultone, and sodium difluoro(oxalate)borate) in proper quantities that synergistically combine their positive attributes to enable a stable solid electrolyte interphase at both negative and positive electrodes surface at 55 °C. Moreover, the role of each additive that consists in producing specific NaF coatings, thin elastomers, sulfate‐based deposits, and so on via combined impedance and X‐ray photoelectron spectroscopy is rationalized. It is demonstrated that empirical electrolyte design rules previously established for Li‐ion technology together with theoretical guidance is vital in the quest for better Na‐based electrolytes that can be extended to other chemistries. Overall, this finding, which is implemented to 18 650 cells, widens the route to the rapid development of the Na‐ion technology based on Na3V2(PO4)2F3/C chemistry.  相似文献   
5.
The binding of pentaammineruthenium (III) to ribonuclease A and B both free and complexed with d(pA)4 has been examined in the crystalline state through the application of X-ray diffraction and difference Fourier techniques. In crystals of native RNase B, the reagent was observed to have many binding sites, some entirely electrostatic in nature and others consistent with coordination to histidine residues. The primary histidine in the latter case was 105 with 119 also partially substituted. In crystals of RNase A+d(pA)4 complex only a single, extremely strong site of substitution was observed, and this was 2.4 Å from the native position of the imidazole ring of histidine 105. Thus, the results of these X-ray diffraction studies appear to be quite consistent with the findings of earlier NMR studies and with the results obtained in crystals of the gene 5 DNA binding protein.  相似文献   
6.
7.
Readouts that define the physiological distributions of drugs in tissues are an unmet challenge and at best imprecise, but are needed in order to understand both the pharmacokinetic and pharmacodynamic properties associated with efficacy. Here we demonstrate that it is feasible to follow the in vivo transport of unlabeled drugs within specific organ and tissue compartments on a platform that applies MALDI imaging mass spectrometry to tissue sections characterized with high definition histology. We have tracked and quantified the distribution of an inhaled reference compound, tiotropium, within the lungs of dosed rats, using systematic point by point MS and MS/MS sampling at 200 µm intervals. By comparing drug ion distribution patterns in adjacent tissue sections, we observed that within 15 min following exposure, tiotropium parent MS ions (mass-to-charge; m/z 392.1) and fragmented daughter MS/MS ions (m/z 170.1 and 152.1) were dispersed in a concentration gradient (80 fmol-5 pmol) away from the central airways into the lung parenchyma and pleura. These drug levels agreed well with amounts detected in lung compartments by chemical extraction. Moreover, the simultaneous global definition of molecular ion signatures localized within 2-D tissue space provides accurate assignment of ion identities within histological landmarks, providing context to dynamic biological processes occurring at sites of drug presence. Our results highlight an important emerging technology allowing specific high resolution identification of unlabeled drugs at sites of in vivo uptake and retention.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号