首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   6篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   2篇
  2008年   12篇
  2007年   4篇
  2006年   9篇
  2005年   9篇
  2004年   6篇
  2003年   8篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1967年   2篇
排序方式: 共有140条查询结果,搜索用时 194 毫秒
1.
The effect of ciprofibrate, a hypolipidemic drug, was examined in the metabolism of palmitic (C16:0) and lignoceric (C24:0) acids in rat liver. Ciprofibrate is a peroxisomal proliferating drug which increases the number of peroxisomes. The palmitoyl-CoA ligase activity in peroxisomes, mitochondria and microsomes from ciprofibrate treated liver was 3.2, 1.9 and 1.5-fold higher respectively and the activity for oxidation of palmitic acid in peroxisomes and mitochondria was 8.5 and 2.3-fold higher respectively. Similarly, ciprofibrate had a higher effect on the metabolism of lignoceric acid. Treatment with ciprofibrate increased lignoceroyl-CoA ligase activity in peroxisomes, mitochondria and microsomes by 5.3, 3.3 and 2.3-fold respectively and that of oxidation of lignoceric acid was increased in peroxisomes and mitochondria by 13.4 and 2.3-fold respectively. The peroxisomal rates of oxidation of palmitic acid (8.5-fold) and lignoceric acid (13.4-fold) were increased to a different degree by ciprofibrate treatment. This differential effect of ciprofibrate suggests that different enzymes may be responsible for the oxidation of fatty acids of different chain length, at least at one or more step(s) of the peroxisomal fatty acid -oxidation pathway.  相似文献   
2.
The water-soluble compounds synthesized by the weed, Pluchea lanceolata, and released by it into the soil significantly reduced seed germination, number of nodes, internode length, shoot and root lengths, nodule number and weight, and Chl a and b and Chl a/b ratio of asparagus bean plants. The pattern of accumulation of nutrients in shoot and root of asparagus bean was also affected. In contrast, the net photosynthetic rate and stomatal conductance of fully expanded leaves were higher in plants grown with treated soil. The concentrations of Mg++, Zn++, and PO43- were higher and K+ was lower in shoots of plants grown with treated soil as compared to those grown with the control soil. Also, roots of plants grown with treated soil showed greater accumulation of Mg++ and NO3-. Shoot/root ratio of nutrients in plants grown with control soil were higher for Zn++, Na+, Ca++, and NO3-, whereas plants grown with treated soil had higher ratios for PO43-. These results provide evidence for allelopathic interference by P. lanceolata to the growth of asparagus bean.  相似文献   
3.
A complimentary DNA clone encoding the entire human palmitoyl-CoA ligase has been isolated from a liver cDNA library and sequenced in it's entirety. The predicted product is a 699 amino acid protein. Southern analysis utilizing the human palmitoyl-CoA ligase gene as a probe revealed varying degrees of similarity amongst various mammalian species. The palmitoyl-CoA ligase gene is highly expressed in liver, heart, skeletal muscle and kidney, and to a lesser extent in brain, lung, placenta and pancreas. The expression of palmitoyl-CoA ligase in various tissue parallels the function of this enzyme in the metabolism of fatty acids in these tissues.  相似文献   
4.
Summary -Hydroxylation is an enzymatic reaction by which long-chain fatty acids are converted to their -hydroxy derivatives. This reaction, in animals, can be detected only in developing brain and is the rate-determining step in the synthesis of hydroxycerebroside, which is an indispensable and abundant myelin lipid. In addition to a particulate fraction from brain, two cytoplasmic factors, one heat-stable and the other heat-labile, are required for -hydroxylation. During the past eight years we have been investigating -hydroxylation. Our progress is summarized and discussed here.  相似文献   
5.
Stripe rust (Puccinia striiformis f. sp. tritici) is one of the major devastating disease which causes large reduction in wheat yield. T. monococcum is an attractive diploid species for gene discovery in wheat with smaller genome size of 5700 Mb compared to 17,300 Mb of bread wheat. An adult plant stripe rust resistance QTL QYrtm.pau-2A was mapped on chromosome 2A flanked by two SSR markers Xwmc170 and Xwmc407. In the present study, two gene based markers Pau_Ta2AL_Gene45 and Pau_Ta2AL_Gene54 developed from 2A specific ESTs were found to map close to QYrtmpau-2A to narrow down the region for candidate gene identification. Utilizing sequence information of these two markers, four BAC clones were identified from the Minimum Tiling Path of 2AL assembly and were sequenced. SSR markers were designed from these BAC sequences and mapped to chromosome 2A. A 50 Mb region of wheat chromomse 2A was identified to harbor stripe rust resistance gene of T. monococcum. Gene based markers identified in the present investigation can be used for marker assisted introgression of QYrtm.pau-2A from T. monococcum to cultivated wheat.  相似文献   
6.
Molecular Biology Reports - Diploid A genome wheat species harbor immense genetic variability which has been targeted and proven useful in wheat improvement. Development and deployment of...  相似文献   
7.
In X-ALD, mutation/deletion of ALD gene (ABCD1) and the resultant very long chain fatty acid (VLCFA) derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD). The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal β-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs) (1 and 3) in both cell types. However, higher induction of ELOVL''s in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of anti-apoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL) and cell survival (phospho-Erk1/2) proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid) leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD.  相似文献   
8.
9.
10.
Resistance of breast carcinomas to hormonal therapy is a clinical obstacle for the treatment of breast cancer. The molecular mechanisms and the factors involved in the progression of tumors from an estrogen (E2)-dependent to an E2-independent phenotype are not entirely understood. Heregulin (HRG) is a pleiotropic growth factor that binds to the erbB family of receptors, which are correlated with breast cancer progression and an aggressive phenotype in the breast carcinomas overexpressing the receptors. Previous studies in transgenic mice have shown that HRG is sufficient to induce mammary gland transformation and proliferation in the presence of hormonal stimulation. However, these studies did not address the important issue of the E2 independence that is part of the progression of breast cancer. In this study, we investigated the role of HRG in E2 independence. We were able to determine that HRG up-regulation was sufficient for the development of mammary tumors in the absence of E2 stimulation, a situation that mimics the progression of the human disease. We demonstrated that in ovariectomized nude mice, HRG induced E2 independence and antiestrogen resistance and promoted metastasis and preneoplastic transformation of the adjacent mouse mammary tissue. We show that one of the mechanisms by which HRG achieves the aggressive phenotype may be mediated via an increase in activated mitogen-activated protein kinase, an increase in a matrix-degrading enzyme, MMP-9, and the overexpression of vascular endothelial growth factors. The up-regulation of these genes occurred in the absence of any additional stimulation, in an autocrine manner. Our data provide new insights into the mechanisms of breast cancer progression in vivo, and reinforce the important role that HRG plays in this process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号