首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2021年   1篇
  2015年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Hutchinson‐Gilford progeria syndrome (HGPS) is a rare accelerated aging disorder most notably characterized by cardiovascular disease and premature death from myocardial infarction or stroke. The majority of cases are caused by a de novo single nucleotide mutation in the LMNA gene that activates a cryptic splice donor site, resulting in production of a toxic form of lamin A with a 50 amino acid internal deletion, termed progerin. We previously reported the generation of a transgenic murine model of progeria carrying a human BAC harboring the common mutation, G608G, which in the single‐copy state develops features of HGPS that are limited to the vascular system. Here, we report the phenotype of mice bred to carry two copies of the BAC, which more completely recapitulate the phenotypic features of HGPS in skin, adipose, skeletal, and vascular tissues. We further show that genetic reduction of the mechanistic target of rapamycin (mTOR) significantly extends lifespan in these mice, providing a rationale for pharmacologic inhibition of the mTOR pathway in the treatment of HGPS.  相似文献   
2.
ATP-binding cassette superfamily of periplasmic metal transporters are known to be vital for maintaining ion homeostasis in several pathogenic and non-pathogenic bacteria. We have determined crystal structure of the high-affinity zinc transporter ZnuA from Escherichia coli at 1.8 A resolution. This structure represents the first native (non-recombinant) protein structure of a periplasmic metal binding protein. ZnuA reveals numerous conformational features, which occur either in Zn(2+) or in Mn(2+) transporters, and presents a unique conformational state. A comprehensive comparison of ZnuA with other periplasmic ligand binding protein structures suggests vital mechanistic differences between bound and release states of metal transporters. The key new attributes in ZnuA include a C-domain disulfide bond, an extra alpha-helix proximal to the highly charged metal chelating mobile loop region, alternate conformations of secondary shell stabilizing residues at the metal binding site, and domain movements potentially controlled by salt bridges. Based on in-depth structural analyses of five metal binding transporters, we present here a mechanistic model termed as "partial domain slippage" for binding and release of Zn(2+).  相似文献   
3.
The malarial parasite Plasmodium falciparum has two nucleosome assembly proteins, PfNapS and PfNapL (Chandra, B. R., Olivieri, A., Silvestrini, F., Alano, P., and Sharma, A. (2005) Mol. Biochem. Parasitol. 142, 237-247). We show that both PfNapS and PfNapL interact with histone oligomers but only PfNapS is able to deposit histones onto DNA. This property of PfNapS is divalent cation-dependent and ATP-independent. Deletion of the terminal subdomains of PfNapS abolishes its nucleosome assembly capabilities, but the truncated protein retains its ability to bind histones. Both PfNapS and PfNapL show binding to the linker histone H1 suggesting their probable role in extraction of H1 from chromatin fibers. Our data suggests distinct sites of interaction for H1 versus H3/H4 on PfNapS. We show that PfNapS and PfNapL are phosphorylated both in vivo and in vitro by casein kinase-II, and this modification is specifically inhibited by heparin. Circular dichroism, fluorescence spectroscopy, and chymotrypsin fingerprinting data together suggest that PfNapL may undergo very small and subtle structural changes upon phosphorylation. Specifically, phosphorylation of PfNapL increases its affinity 3-fold for core histones H3, H4, and for the linker histone H1. Finally, we demonstrate that PfNapS is able to extract histones from both phosphorylated and unphosphorylated PfNapL, potentially for histone deposition onto DNA. Based on these results, we suggest that the P. falciparum NapL is involved in the nucleocytoplasmic relay of histones, whereas PfNapS is likely to be an integral part of the chromatin assembly motors in the parasite nucleus.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号