首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   9篇
  2018年   2篇
  2017年   3篇
  2016年   8篇
  2015年   9篇
  2014年   8篇
  2013年   16篇
  2012年   20篇
  2011年   23篇
  2010年   12篇
  2009年   11篇
  2008年   12篇
  2007年   6篇
  2006年   7篇
  2005年   14篇
  2004年   8篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   4篇
  1970年   4篇
  1967年   3篇
  1966年   1篇
排序方式: 共有221条查询结果,搜索用时 337 毫秒
1.
The pattern of acetylcholinesterase (AChE) molecular forms, obtained by sucrose gradient sedimentation, was studied at different in vitro developmental stages of myogenic cells isolated from adult mouse skeletal muscle. Only the globular forms were present in rapidly dividing satellite cells during the first days in culture. After myotube formation, a pattern similar to that described in mammalian fast-twitch skeletal muscle was observed. This pattern did not change during the following period in culture (up to 1 month) nor could it be modified by co-culturing with spinal cord motoneurons or by addition of brain-derived extracts. The internal-external localization of AChE molecular forms has been determined by the use of echothiophate iodide, a membrane-impermeant irreversible inhibitor of AChE. Echothiophate-treated cultures showed about 40% of both asymmetric and globular forms localized on the sarcolemma, with their active sites oriented outward. Analysis of culture medium from untreated cultures revealed the presence of both asymmetric and globular forms. When the same analysis was repeated on cultures of myoblasts derived from 16-day-old mouse embryos, the pattern of AChE forms was different. The myotubes derived from these cells exhibit a very small proportion of asymmetric form, which was not released into the medium. This pattern was not further modified during the following days of culture, nor by co-cultures with spinal cord motoneurons or by incubations with brain-derived extracts. Thus, the myotubes derived from myoblasts express in culture a clear phenotypic difference when compared to the corresponding myotubes from satellite cells, supporting the view that these two myogenic cells are endowed with different developmental programs.  相似文献   
2.
Summary Human melanoma cells are sensitive to the lytic activity of natural killer (NK) and lymphokine-activated killer (LAK) cells in vitro. The events resulting in tumour cell killing by lymphocytic effectors have not been completely clarified, and the same target cell determinants regulating responsiveness to immune cytolysis have not yet been identified. Indeed, changes in the differentiative status of leukemia cells as well as in the expression of major histocompatibility complex (MHC) antigens have been described to modulate sensitivity to cytotoxic effectors; moreover surface expression of adhesion factors or extracellular matrix proteins by the cancer cells can promote the activation of the cytolytic effectors and has been described to correlate with tumour cell sensitivity to cytolytic cells. We reasoned that treatment with differentiation inducers could modulate melanoma cell sensitivity to NK and LAK cells. The present study demonstrates that human melanoma GLL-19 cells, when treated with the phorbol diester phorbol 12-myristate 13-acetate (PMA) in vitro, undergo growth inhibition and neuron-like differentiation. Moreover PMA treatment induces an evident inhibition of GLL-19 cell sensitivity to NK- and LAK-mediated cytotoxicity. GLL-19 cells express constitutively MHC class I antigens. PMA treatment, however, does not modify the expression of MHC class I and class II DR antigens in human melanoma GLL-19 cells. We have finally evaluated the effects of PMA on the expression at the cell surface of adhesion factors such as ICAM-1, and extracellular matrix proteins such as collagen IV, laminin and fibronectin; we have also studied the expression of the integrin vitronectin receptor, a membrane receptor for adhesive proteins. While adhesion factors and extracellular matrix proteins appear to play an important role in the interaction between immune effector and tumour target, it can be supposed that the modulation of such membrane-associated proteins or glycoproteins induces NK and LAK resistance in cancer cells. We indeed found that PMA treatment induced in GLL-19 a marked reduction of membrane expression of collagen IV and ICAM-1; moreover PMA reduced the cell membrane expression of the integrin vitronectin receptor. On the other hand, membrane expression of fibronectin and laminin was not affected by PMA. These data indicate that the acquisition of a NK- and LAK-resistant phenotype by GLL-19 cells occurs together with cell differentiation, down-regulation of membrane expression of collagen IV, ICAM-1 and vitronectin receptor, but in the absence of changes in MHC antigens.This work has been supported by the Italian Association for Cancer Research (A. I. R. C.) and by Istituto Superiore di Sanità, Italy-USA joint program on New Therapies on Neoplasia.  相似文献   
3.
4.
5.
A new serine-carboxyl proteinase, called kumamolisin-ac, was purified from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. The enzyme is a monomeric protein of 45?kDa, active over a wide temperature range (5.0–70°C) and extremely acidic pHs (1.0–4.0), showing maximal proteolytic activity at pH?2.0 and 60°C. Interestingly, kumamolisin-ac displayed a significant proteolytic activity even at 5°C, thus suggesting a sort of cold-adaptation for this enzyme. The protease was remarkably stable at high temperatures (t1/2 at 80°C, 10?h, pH?2.0) and over a broad range of pH (2.0–7.0). Substrate analysis indicated that kumamolisin-ac was active on a variety of macromolecular substrates, such as haemoglobin, hide powder azure, and azocoll. In particular, a high specific activity was detected towards collagen. The corresponding gene was cloned, expressed and the recombinant protease, was found to be homologous to proteases of the ‘S53’ family. From the high identity with kumamolisin and kumamolisin-As, known as collagenolytic proteases, kumamolisin-ac can be considered as the third collagenolytic affiliate within the ‘S53’ family. Cleavage specificity investigation of kumamolisin-ac revealed a unique primary cleavage site in bovine insulin B-chain, whereas a broad specificity was detected using bovine α-globin as substrate. Thus, kumamolisin-ac could represent an attractive candidate for industrial-scale biopeptide production under thermoacidophilic conditions.  相似文献   
6.
Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20 mM and 15 mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram + bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2 × 104 M− 1 s− 1. It also exhibited weak phosphatase activity with a kcat/KM value of 2.7 × 10− 4 M− 1 s− 1. The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural–functional characterization of a thermophilic arsenate reductase.  相似文献   
7.
CARD14/CARMA2sh (CARMA2sh) is a scaffold protein whose mutations are associated with the onset of human genetic psoriasis and other inflammatory skin disorders. Here we show that the immunomodulatory adapter protein TRAF family member-associated NF-κB activator (TANK) forms a complex with CARMA2sh and MALT1 in a human keratinocytic cell line. We also show that CARMA2 and TANK are individually required to activate the nuclear factor κB (NF-κB) response following exposure to polyinosinic-polycytidylic (poly [I:C]), an agonist of toll-like receptor 3. Finally, we present data indicating that TANK is essential for activation of the TBK1/IRF3 pathway following poly (I:C) stimulation, whereas CARMA2sh functions as a repressor of it. More important, we report that two CARMA2sh mutants associated with psoriasis bind less efficiently to TANK and are therefore less effective in suppressing the TBK1/IRF3 pathway. Overall, our data indicate that TANK and CARMA2sh regulate TLR3 signaling in human keratinocytes, which could play a role in the pathophysiology of psoriasis.  相似文献   
8.
Three Legionella pneumophila strains isolated from municipal hot tap water during a multicentric Italian survey and belonging to serogroups 1, 6, 9 and the reference strain Philadelphia-1 were studied to determine the intracellular replication capability and the cytopathogenicity in human monocyte cell line U937 and in an Acanthamoeba polyphaga strain. Our results show that both serogroups 1 and Philadelphia-1 were able to multiply into macrophages inducing cytopathogenicity, while serogroup 6 and ever more serogroup 9 were less efficient in leading to death of the infected macrophages. Both serogroups 1 and 6 displayed a quite good capability of intracellular replication in A. polyphaga, although serogroup 1 was less cytopathogenic than serogroup 6. Serogroup 9, like Philadelphia-1 strain, showed a reduced efficiency of infection and replication and a low cytopathogenicity towards the protozoan. Our study suggests that bacterial pathogenesis is linked to the difference in the virulence expression of L. pneumophila serogroups in both hosts, as demonstrated by the fact that only L. pneumophila serogroup 1 shows the contextual expression of the two virulence traits. Serogroup 6 proves to be a good candidate as pathogen since it shows a good capacity for intracellular replication in protozoan.  相似文献   
9.
Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the β1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of β-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated β-glucans.  相似文献   
10.
Pseudo-nitzschia is a thoroughly studied pennate diatom genus for ecological and biological reasons. Many species in this genus, including Pseudo-nitzschia multistriata, can produce domoic acid, a toxin responsible for amnesic shellfish poisoning. Physiological, phylogenetic and biological features of P. multistriata were studied extensively in the past. Life cycle stages, including the sexual phase, fundamental in diatoms to restore the maximum cell size and avoid miniaturization to death, have been well described for this species. P. multistriata is heterothallic; sexual reproduction is induced when strains of opposite mating type are mixed, and proceeds with cells producing two functionally anisogamous gametes each; however, detailed cytological information for this process is missing. By means of confocal laser scanning microscopy and nuclear staining, we followed the nuclear fate during meiosis, and using time-lapse cinematography, we timed every step of the sexual reproduction process from mate pairing to initial cell hatching. The present paper depicts cytological aspects during gametogenesis in P. multistriata, shedding light on the chloroplast behaviour during sexual reproduction, finely describing the timing of the sexual phases and providing reference data for further studies on the molecular control of this fundamental process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号