首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   9篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   5篇
  2011年   2篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   7篇
  2000年   4篇
  1999年   6篇
  1998年   2篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   2篇
  1972年   1篇
  1966年   1篇
排序方式: 共有106条查询结果,搜索用时 205 毫秒
1.
2.
Titration of Asp-85, the proton acceptor and part of the counterion in bacteriorhodopsin, over a wide pH range (2-11) leads us to the following conclusions: 1) Asp-85 has a complex titration curve with two values of pKa; in addition to a main transition with pKa = 2.6 it shows a second inflection point at high pH (pKa = 9.7 in 150-mM KCl). This complex titration behavior of Asp-85 is explained by interaction of Asp-85 with an ionizable residue X'. As follows from the fit of the titration curve of Asp-85, deprotonation of X' increases the proton affinity of Asp-85 by shifting its pKa from 2.6 to 7.5. Conversely, protonation of Asp-85 decreases the pKa of X' by 4.9 units, from 9.7 to 4.8. The interaction between Asp-85 and X' has important implications for the mechanism of proton transfer. In the photocycle after the formation of M intermediate (and protonation of Asp-85) the group X' should release a proton. This deprotonated state of X' would stabilize the protonated state of Asp-85.2) Thermal isomerization of the chromophore (dark adaptation) occurs on transient protonation of Asp-85 and formation of the blue membrane. The latter conclusion is based on the observation that the rate constant of dark adaptation is directly proportional to the fraction of blue membrane (in which Asp-85 is protonated) between pH 2 and 11. The rate constant of isomerization is at least 10(4) times faster in the blue membrane than in the purple membrane. The protonated state of Asp-85 probably is important for the catalysis not only of all-trans <=> 13-cis thermal isomerization during dark adaptation but also of the reisomerization of the chromophore from 13-cis to all-trans configuration during N-->O-->bR transition in the photocycle. This would explain why Asp-85 stays protonated in the N and O intermediates.  相似文献   
3.
The effect of temperature, nutrition, and density stresses on phenotypic and genetic variation in morphological traits (thorax length, wing length, number of sternopleural and abdominal bristles, and number of arista branches) was examined in Drosophila melanogaster. In addition, the effect of stress on developmental stability measured as fluctuation asymmetry of bilateral traits was analyzed. All of the stresses were shown to increase phenotypic variation and fluctuating asymmetry of bilateral traits. Genetic variation of morphometric traits estimated using the isofemale line technique was higher under stressful than under normal conditions. Biotic and abiotic stresses were similar in their effect on phenotypic and genetic variation. The effect of stress on variability of morphometric traits was generally higher than on that of meristic traits. Possible causes of the increase of genetic variation under stress are discussed.  相似文献   
4.
Elevated levels of interleukin-1 (IL-1) have been shown to amplify the inflammatory response against periodontopathogenic bacteria. In humans, polymorphisms in the IL1A and IL1B genes are the most well-studied genetic polymorphisms associated with periodontal disease (PD). In contrast to human, there is a lack of knowledge on the genetic basis of canine PD. A case–control study was conducted in which a molecular analysis of dog IL1A and IL1B genes was performed. Of the eight genetic variants identified, seven in IL1A gene and one in IL1B gene, IL1A/1_g.388A >C and IL1A/1_g.521T >A showed statistically significant differences between groups (adjusted OR (95% CI): 0.15 (0.03–0.76), P= 0.022; 5.76 (1.03–32.1), P= 0.046, respectively). It suggests that in the studied population the IL1A/1_g.388C allele is associated with a decreased PD risk, whereas the IL1A/1_g.521A allele can confer an increased risk. Additionally, the IL1A/2_g.515G >T variation resulted in a change of amino acid, i.e. glycine to valine. In silico analysis suggests that this change can alter protein structure and function, predicting it to be deleterious or damaging. This work suggests that IL1 genetic variants may be important in PD susceptibility in canines.  相似文献   
5.

Background

The gene YCL047C, which has been renamed promoter of filamentation gene (POF1), has recently been described as a cell component involved in yeast filamentous growth. The objective of this work is to understand the molecular and biological function of this gene.

Results

Here, we report that the protein encoded by the POF1 gene, Pof1p, is an ATPase that may be part of the Saccharomyces cerevisiae protein quality control pathway. According to the results, Δpof1 cells showed increased sensitivity to hydrogen peroxide, tert-butyl hydroperoxide, heat shock and protein unfolding agents, such as dithiothreitol and tunicamycin. Besides, the overexpression of POF1 suppressed the sensitivity of Δpct1, a strain that lacks a gene that encodes a phosphocholine cytidylyltransferase, to heat shock. In vitro analysis showed, however, that the purified Pof1p enzyme had no cytidylyltransferase activity but does have ATPase activity, with catalytic efficiency comparable to other ATPases involved in endoplasmic reticulum-associated degradation of proteins (ERAD). Supporting these findings, co-immunoprecipitation experiments showed a physical interaction between Pof1p and Ubc7p (an ubiquitin conjugating enzyme) in vivo.

Conclusions

Taken together, the results strongly suggest that the biological function of Pof1p is related to the regulation of protein degradation.
  相似文献   
6.
Similarly to bacteriorhodopsin, proteorhodopsin that normally contains all-trans and 13-cis retinal is transformed at low pH to a species containing 9-cis retinal under continuous illumination at lambda > 530 nm. This species, absorbing around 430 nm, returns thermally in tens of minutes to initial pigment and can be reconverted also with blue-light illumination. The yield of the 9-cis species is negligibly small at neutral pH but increases manyfold (>100) at acid pH with a pK(a) of 2.6. This indicates that protonation of acidic group(s) alters the photoreaction pathway that leads normally to all-trans --> 13-cis isomerization. In the D97N mutant, in which one of the two acidic groups in the vicinity of the retinal Schiff base is not ionizable, the yield of 9-cis species at low pH shows a pH dependence similar to that in the wild-type but with a somewhat increased pK(a) of 3.3. In contrast to this relatively minor effect, replacement of the other acidic group, Asp227, with Asn results in a remarkable, more than 50-fold, increase in the yield of the light-induced formation of 9-cis species in the pH range 4-6. It appears that protonation of Asp227 at low pH is what causes the dramatic increase in the yield of the 9-cis species in wild-type proteorhodopsin. We conclude that the photoisomerization pathways in proteorhodopsin to 13-cis or 9-cis photoproducts are controlled by the charge state of Asp227.  相似文献   
7.
Abstract: Red‐rumped agoutis (Dasyprocta leporina) are important seed dispersers/predators of Neotropical large‐seeded plants. Several species of seeds cached by agoutis have an edible reward, in contrast to temperate rodent‐dispersed diaspores. The quick meal hypothesis states that the presence of a reward such as edible pulp will enhance the efficiency of rodents as seed disperses by satiating the animal and, consequently, reducing seed predation and enhancing hoarding. In this study, this hypothesis was tested using as the reference system the pulp and seeds of Hymenaea courbaril. Seeds with and without pulp were offered to agoutis and the behaviour of each individual was recorded. Since the probability of predation and hoarding were complementary, we used the probability of predation. The proportion of agoutis that preyed on at least one seed was similar for seeds with (42.8% of individuals) and without (40.0% of individuals) pulp. In agoutis that preyed upon at least one seed, the probability that they killed a seed did not differ between seeds with (0.17 ± 0.03) and without (0.20 ± 0.08) pulp. Hence, these results do not support the ‘quick meal hypothesis’.  相似文献   
8.
Abstract In several plants, extrafloral nectaries (EFN) are located close to the reproductive structures, suggesting that ants may act as a defence against specialized seed predators that overcome chemical defences. Alternatively, ants may also deter herbivores in a generalized manner, thereby protecting the whole plant. In this work, we examined the relationship between the chemically protected weed Crotalaria pallida Ait. (Leguminosae) that bears EFN, its specialized seed predator, the larvae of the arctiid moth Utetheisa ornatrix L. (Arctiidae) and ants. We tested two hypotheses related to the type of deterrence caused by ants. The Seed Predator Deterrence Hypothesis predicts that ant deterrence is directed primarily towards herbivores that destroy seeds and other reproductive structures, without attacking herbivores on vegetative structures. The General Deterrence Hypothesis states that ants are general in their effects, equally deterring herbivores in vegetative and reproductive structures. Our results supported the predictions of the Seed Predator Deterrence Hypothesis, namely, that (i) ant activity on EFN was related to the vulnerability of reproductive structures to attack by U. ornatrix; (ii) ant patrolling was restricted almost entirely to racemes; (iii) ants removed termites used as baits more frequently on racemes than on leaves; and (iv) U. ornatrix larvae were often expulsed from the racemes. These results indicate that EFN can act as another deterrent mechanism in chemically protected plants by promoting the expulsion of specialist seed predators.  相似文献   
9.

Background  

Both direct and indirect interactions determine molecular recognition of ligands by proteins. Indirect interactions can be defined as effects on recognition controlled from distant sites in the proteins, e.g. by changes in protein conformation and mobility, whereas direct interactions occur in close proximity of the protein's amino acids and the ligand. Molecular recognition is traditionally studied using three-dimensional methods, but with such techniques it is difficult to predict the effects caused by mutational changes of amino acids located far away from the ligand-binding site. We recently developed an approach, proteochemometrics, to the study of molecular recognition that models the chemical effects involved in the recognition of ligands by proteins using statistical sampling and mathematical modelling.  相似文献   
10.
Tyrosine-83, a residue which is conserved in all halobacterial retinal proteins, is located at the extracellular side in helix C of bacteriorhodopsin. Structural studies indicate that its hydroxyl group is hydrogen bonded to Trp189 and possibly to Glu194, a residue which is part of the proton release complex (PRC) in bacteriorhodopsin. To elucidate the role of Tyr83 in proton transport, we studied the Y83F and Y83N mutants. The Y83F mutation causes an 11 nm blue shift of the absorption spectrum and decreases the size of the absorption changes seen upon dark adaptation. The light-induced fast proton release, which accompanies formation of the M intermediate, is observed only at pH above 7 in Y83F. The pK(a) of the PRC in M is elevated in Y83F to about 7.3 (compared to 5.8 in WT). The rate of the recovery of the initial state (the rate of the O --> BR transition) and light-induced proton release at pH below 7 is very slow in Y83F (ca. 30 ms at pH 6). The amount of the O intermediate is decreased in Y83F despite the longer lifetime of O. The Y83N mutant shows a similar phenotype in respect to proton release. As in Y83F, the recovery of the initial state is slowed several fold in Y83N. The O intermediate is not seen in this mutant. The data indicate that the PRC is functional in Y83F and Y83N but its pK(a) in M is increased by about 1.5 pK units compared to the WT. This suggests that Tyr83 is not the main source for the proton released upon M formation in the WT; however, Tyr83 is involved in the proton release affecting the pK(a) of the PRC in M and the rate of proton transport from Asp85 to PRC during the O --> bR transition. Both the Y83F and the Y83N mutations lead to a greatly decreased functionality of the pigment at high pH because most of the pigment is converted into the inactive P480 species, with a pK(a) 8-9.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号