首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   21篇
  2023年   3篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   7篇
  2012年   9篇
  2011年   13篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   5篇
  2006年   11篇
  2005年   9篇
  2004年   7篇
  2003年   20篇
  2002年   9篇
  2001年   11篇
  2000年   8篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1971年   2篇
  1970年   1篇
  1965年   1篇
排序方式: 共有208条查询结果,搜索用时 14 毫秒
1.
20 (12 men and 8 women) acute myocardial infarction (AMI) patients and 17 (14 men and 3 women) patients with arterial hypertension (II degrees stage according to OMS) in comparison to controls age and sex matched, were studied, serum IgA, IgG, IgM were evaluated with radial immunodiffusion and serum IgE with RIA. Ho significant changes ef immunoglobulins were observed between hypertensive patients and controls; whereas a significant increase of IgM, IgG and IgE, with out changes of IgA, were shown in AMI patients. Serum Ig and IgM were significantly augmented in AMI patients in comparison to hypertensive patients.  相似文献   
2.
Polypeptide growth factors that stimulate cell proliferation bind to cell surface receptors and activate intracellular signal transduction pathways. One major signalling pathway, initiated by phosphatidylinositol (PI) turnover, involves activation of protein kinase C. Some polypeptide growth factors, including mitogens that activate protein kinase C, induce a rapid increase in expression of the proto-oncogenes, c-myc and c-fos. In order to characterize the signal transduction pathways responsible for proto-oncogene activation, we treated Swiss 3T3 cells with the tumor promoter phorbol dibutyrate to generate cells deficient in protein kinase C. These cells were then stimulated with platelet extract, bombesin, or epidermal growth factor (EGF) and the levels of c-myc and c-fos mRNA were determined. Platelet extract or bombesin, which stimulate PI turnover, were substantially weaker inducers of c-myc and c-fos mRNA levels in the protein kinase C-depleted cells, although some variability with platelet extract was noted. EGF, which does not stimulate PI turnover in several cell systems, was by contrast a potent inducer of both proto-oncogenes whether or not the cells were deficient in protein kinase C. Pretreatment of cells with phorbol dibutyrate caused little or no change in the basal levels of c-myc or c-fos mRNA, but led to a small but significant increase in basal levels of ornithine decarboxylase mRNA. These results demonstrate that EGF and growth factors that activate PI turnover induce expression of the c-myc and c-fos proto-oncogenes through different pathways.  相似文献   
3.
It has been reported that acetyl-l-carnitine (AcCn) can reduce the degenerative processes in the central nervous system of rats, modify the fluidity of membranes and decrease the accumulation of lipofuscins in neurones. In light of these considerations we have assayed the in vitro effect of acetyl-l-carnitine on spontaneous and induced lipoperoxidation in rat skeletal muscle; in addition, the effect of AcCn on XD/XO ratio was evaluated. The presence of AcCn (10–40 mM) in incubation medium significantly reduced MDA and conjugated diene formation in rat skeletal muscle; moreover, a significant decrease in induced MDA levels was observed when microsomal preparation where incubated in the presence of 10–40 mM AcCn. Since a significant reduction of XO activity was detected in the presence of 10–80 mM AcCn, the reduced lipid peroxidation by AcCn seems to be due to an inhibition of XO activity.  相似文献   
4.
5.
Poccia  D. L.  Palevitz  B. A.  Campisi  Judith  Lyman  H. 《Protoplasma》1979,98(1-2):91-113
Summary The interaction of fluorescamine with living plant and animal cells was investigated to determine which subcellular structures and molecular species might react with the dye and to assess its effects on cell viability and function.Plasma and nuclear membranes ofXenopus erythrocytes, mitochondria of sea urchin sperm, growing apices of Timothy root hairs, and various organelles ofNitella andEuglena were labelled as judged by fluorescence microscopy. Cytoplasmic fluorescence was particulate inNitella and easily displaced by moderate centrifugal fields in sea urchin eggs. Chloroplasts and nuclei isolated from cells labelledin vivo exhibited fluorescamine dependent fluorescence.Reaction seemed to have little or no effect on cell viability (Euglena) photoautotrophic growth (Euglena), cell motility (sperm), fertilizability (sperm or egg), embryonic development (sea urchin), or cytoplasmic streaming (Nitella, Timothy).Quantitative fluorometric analysis of thein vivo reactants in sperm indicated a reaction preference for phospholipid over protein compared to control cells dissociated in SDS prior to labelling. The bulk of labelled lipid was phosphatidylethanolamine.These results suggest that fluorescamine is a true vital dye which can label the cell surface as well as penetrate deeply within cells to label a variety of organelles. The distribution of fluorescence and results of chemical analysis suggest thatin vivo the dye may preferentially react with membrane.  相似文献   
6.
Normal cells, with few exceptions, cannot proliferate indefinitely. Cell populations--in vivo and in culture--generally undergo only a limited number of doublings before proliferation invariably and irreversibly ceases. This process has been termed the finite lifespan phenotype or cellular senescence. There is long-standing, albeit indirect, evidence that cellular senescence plays an important role in complex biological processes as diverse as normal growth control, differentiation, development, aging, and tumorigenesis. In recent years, it has been possible to develop a molecular framework for understanding some of the fundamental features of cellular senescence. This framework derives primarily from the physiology, genetics, and molecular biology of cells undergoing senescence in culture. Our understanding of senescence, and the mechanisms that control it, is still in its infancy. Nonetheless, recent data raise some intriguing possibilities regarding potential molecular bases for the links between senescence in culture and normal and abnormal growth control, differentiation, and aging.  相似文献   
7.
A novel mutation which caused a structural change in a lipoprotein in the outer-membrane has been found in Escherichia coli K-12. The lipoprotein of the wild-type strain is known to have a peculiar amino terminal structure: glycerylcysteine with two fatty acids attached by ester linkages and one fatty acid by an amide linkage. In contrast to the wild-type lipoprotein, the mutant lipoproteins is isolated from the E. coli envelope as a dimer of molecular weight of about 15,000. The dimer can be reduced by mercaptoethanol to the lipoprotein monomer of molecular weight of about 7,500. The monomer has a free thiol group which is susceptible to monoiodacetie mutant lipoprotein is extremely low in comparison with that into the wild-type lipoprotein. These results suggest that the mutant is defective in transferring a glycerol group to the thiol group of the amino terminal cysteine residue of the lipoprotein. The gene responsible for this modification reaction has been located at 36.5 min on the E. coli chromosome.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号