首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   7篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   3篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   6篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   6篇
  2004年   2篇
  2003年   10篇
  2002年   5篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有76条查询结果,搜索用时 218 毫秒
1.
2.
The regulation of signal transduction by phosphorylation and ubiquitination is essential to ensure the correct behavior of eukaryotic cells. We searched for protein families involved in such signaling in several eukaryotic species and in a limited set of prokaryotes, where two members of the Planctomycetes phylum were included as they exhibit eukaryote-like features (Gemmata obscuriglobus and Pirellula staleyi). We identified sequences homologous to eukaryotic serine/threonine kinases (STKs) and E2-ubiquitin conjugating enzymes in the two Planctomycetes species. To extend these analyses to the Planctomycetes/Verrucomicrobia/Chlamydia super-phylum, we performed comparative analyses using domains from kinases, phosphatases and GTPases that serve as signaling signatures, and we analyzed their distributions. We found substantial differences in kinome densities with regards to other prokaryote clades and among the groups in the Planctomycetes/Verrucomicrobia/Chlamydia super-phylum. In addition, we identified the presence of classic eukaryotic E2-conjugating ubiquitin proteins in prokaryotes, these having previously believed to exist only in eukaryotes. Our phylogenetic analyses of the STKs signature domains and E2-enzymes suggest the existence of horizontal gene transfer.  相似文献   
3.
4.
The genome of Pseudomonas putida KT2440 encodes an unexpected capacity to tolerate heavy metals and metalloids. The availability of the complete chromosomal sequence allowed the categorization of 61 open reading frames likely to be involved in metal tolerance or homeostasis, plus seven more possibly involved in metal resistance mechanisms. Some systems appeared to be duplicated. These might perform redundant functions or be involved in tolerance to different metals. In total, P. putida was found to bear two systems for arsenic (arsRBCH), one for chromate (chrA), four to six systems for divalent cations (two cadA and two to four czc chemiosmotic antiporters), two systems for monovalent cations: pacS, cusCBA (plus one cryptic silP gene containing a frameshift mutation), two operons for Cu chelation (copAB), one metallothionein for metal(loid) binding, one system for Te/Se methylation (tpmT) and four ABC transporters for the uptake of essential Zn, Mn, Mo and Ni (one nikABCDE, two znuACB and one mobABC). Some of the metal-related clusters are located in gene islands with atypical genome signatures. The predicted capacity of P. putida to endure exposure to heavy metals is discussed from an evolutionary perspective.  相似文献   
5.
By the end of 2002, we witnessed the landmark submission of the 100th complete genome sequence in the databases. An overview of these genomes reveals certain interesting trends and provides valuable insights into possible future developments.  相似文献   
6.
The peribacteroid membrane (PBM) of symbiosomes from pea root nodules developed in the presence of boron (+B) was labelled by anti-rhamnogalacturonan II (RGII) (anti-rhamnogalacturonan II pectin polysaccharide) antiserum. However, in nodules from plants grown at low boron (-B), anti-RGII pectin polysaccharide did not stain PBMs. Given that RGII pectin binds to borate, and that symbiosomes differentiate aberrantly in -B nodules because of abnormal vesicle traffic, anti-RGII pectin polysaccharide antigens were further analysed. Following electrophoresis and electroblotting, anti-RGII pectin polysaccharide immunostained three bands in +B but not in -B nodule-derived PBMs. A similar banding pattern was observed after the immunostaining of membrane fractions from uninfected roots, indicating that anti-RGII pectin polysaccharide antigens are common to both peribacteroid and plasma membranes. Protease treatment of samples led to disappearance of anti-RGII pectin polysaccharide labelling, indicating that the three immunostained bands correspond to proteins or glycoproteins. The immunochemical study of RGII antigen distribution during nodule development showed that it is strongly present on the PBM of dividing (undifferentiated) symbiosomes but progressively disappeared during symbiosome maturation. In B-deficient nodules, PBMs were never decorated with RGII antigens, and there was an abnormal targeting of vesicles containing pectic polysaccharide (homogalacturanan) to cell membranes. Overall, these results indicate that RGII, boron and certain membrane (glyco)-proteins may interact closely and function cooperatively in membrane processes associated with symbiosome division and general cell growth.  相似文献   
7.
The genome of Pseudomonas putida KT2440 encodes five proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system. Two of these (FruA and FruB) form a dedicated system for fructose intake, while enzyme I(Ntr) (EI(Ntr); encoded by ptsP), NPr (ptsO), and EII(Ntr) (ptsN) act in concert to control the intracellular accumulation of polyhydroxyalkanoates, a typical product of carbon overflow.  相似文献   
8.
In Yersinia pestis, the Yfe and Feo systems likely function to transport ferrous iron. Both FeoA and FeoB are essential for iron acquisition activity while FeoC is not. Mutations in yfe and feo had an additive effect on microaerophilic growth under iron-chelating conditions. Y. pestis cells lacking the Ybt siderophore-dependent system, the Yfe or the Feo system grow normally in J774A.1 cells. However, a double yfeAB feoB mutant was no longer able to grow in this murine macrophage cell line. This growth defect likely resulted from iron and not manganese deprivation since a yfeAB mntH mutant grew normally in J774A.1 cells. These results suggest that the Yfe and Feo systems are somewhat redundant ferrous iron transporters capable of iron acquisition during intracellular growth of the plague bacterium.  相似文献   
9.
10.

Background

Experimental observations and numerical studies with dissipative metabolic networks have shown that cellular enzymatic activity self-organizes spontaneously leading to the emergence of a metabolic core formed by a set of enzymatic reactions which are always active under all environmental conditions, while the rest of catalytic processes are only intermittently active. The reactions of the metabolic core are essential for biomass formation and to assure optimal metabolic performance. The on-off catalytic reactions and the metabolic core are essential elements of a Systemic Metabolic Structure which seems to be a key feature common to all cellular organisms.

Methodology/Principal Findings

In order to investigate the functional importance of the metabolic core we have studied different catalytic patterns of a dissipative metabolic network under different external conditions. The emerging biochemical data have been analysed using information-based dynamic tools, such as Pearson''s correlation and Transfer Entropy (which measures effective functionality). Our results show that a functional structure of effective connectivity emerges which is dynamical and characterized by significant variations of bio-molecular information flows.

Conclusions/Significance

We have quantified essential aspects of the metabolic core functionality. The always active enzymatic reactions form a hub –with a high degree of effective connectivity- exhibiting a wide range of functional information values being able to act either as a source or as a sink of bio-molecular causal interactions. Likewise, we have found that the metabolic core is an essential part of an emergent functional structure characterized by catalytic modules and metabolic switches which allow critical transitions in enzymatic activity. Both, the metabolic core and the catalytic switches in which also intermittently-active enzymes are involved seem to be fundamental elements in the self-regulation of the Systemic Metabolic Structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号