首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   16篇
  2022年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   7篇
  2014年   6篇
  2013年   4篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   7篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1984年   1篇
  1983年   1篇
  1977年   2篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
排序方式: 共有138条查询结果,搜索用时 421 毫秒
1.
Peptides and neurotransmission in the central nervous system   总被引:1,自引:0,他引:1  
Radioimmunoassays of brain extracts have shown that several peptides occur in high concentrations in the CNS. The releasing-factor peptides TRF, LRF, somatostatin, CRF and GRF have the highest concentration in the hypothalamic extracts. High levels of somatostatin, CCK octapeptide, neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) are found in cortical extracts. Substance P, CCK, NPY, and enkephalins are present in high concentrations in basal ganglia and mesolimbic areas. Pharmacological doses of these peptides result in several behavioural and vegetative effects. Immunocytochemical studies show that the CNS peptides are localised in neurones and in synaptic vesicles. In vitro studies with brain tissues show that peptides are capable of modifying the ongoing classical neurotransmission. In depressive patients several neuropeptides (CCK, CRF and NPY) have been shown to have low CSF levels. Patients dying of senile dementia have low cortical levels of somatostatin, CRF and substance P. In schizophrenic patients CCK peptides have shown to improve some symptoms. At present the therapeutic potentials of peptides are poorly known. More studies are required to understand their role in neurotransmission and related pathological states.  相似文献   
2.
A key regulator of cambial growth is the plant hormone indoleacetic acid (IAA). Here we report on altered wood characteristics and growth patterns in transgenic hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) expressing Agrobacterium tumefaciens T-DNA IAA-biosynthetic iaaM and iaaH genes. Eighteen lines simultaneously expressing both genes were regenerated. Of these, four lines, verified to be transgenic by northern blot analysis, were selected and raised under controlled growth conditions. All four lines were affected in their growth patterns, including alterations in height and stem diameter growth, internode elongation, leaf enlargement, and degree of apical dominance. Two transgenic lines, showing the most distinct phenotypic deviation from the wild type, were characterized in more detail for free and conjugated IAA levels and for wood characteristics. Both lines showed an altered IAA balance, particularly in mature leaves and roots where IAA levels were elevated. They also exhibited changes in wood anatomy, most notably a reduction in vessel size, an increase in vessel density, and changes in ray development. Thus, the recent development of techniques for gene transfer to forest trees enabled us to investigate the influence of an altered IAA balance on xylem development in an intact experimental system. In addition, the results demonstrate the possibility of manipulating wood properties in a forest tree through controlled changes of IAA concentration and distribution.  相似文献   
3.
Expression and glycosylation studies of human FGF receptor 4   总被引:2,自引:0,他引:2  
Fibroblast growth factor receptor subtype 4 (FGFR4) has been shown to have special activation properties and just one splicing form, unlike the other FGFRs. FGFR4 overexpression is correlated with breast cancer and therefore FGFR4 is a target for drug design. Our aim is to overexpress high amounts of homogeneous FGFR4 extracellular domain (FGFR4(ed)) for structural studies. We show that baculovirus-insect cell-expressed FGFR4(ed) is glycosylated on three (N88, N234, and N266) of the six possible N-glycosylation sites but is not O-glycosylated. The deglycosylated triple mutant was expressed and had binding properties similar to those of glycosylated FGFR4(ed), but was still heterogeneous. Large amounts of FGFR4(ed) have been produced into inclusion bodies in Escherichia coli and refolded at least partly correctly but the refolded E. coli-produced FGFR4(ed) still aggregates.  相似文献   
4.
In this study, we investigated the hypothesis that the pro-oxidative properties of Angeli's salt (AS), a nitroxyl anion (HNO/NO -) releasing compound, cause neurotoxicity in dopaminergic neurons. The pro-oxidative properties were demonstrated in vitro by measuring hydroxylation products of salicylate and peroxidation of lipids under various redox conditions. AS (0-1000 μM) released high amounts of hydroxylating species in a concentration dependent manner. AS also increased lipid peroxidation in brain homogenates at concentrations below 100 μM, while inhibiting it at 1000 μM concentration. The AS induced pro-oxidative effects were completely suppressed by copper (II), which converts nitroxyl anion to nitric oxide, as well as by a potent nitroxyl anion scavenger glutathione. Neurotoxicity towards dopaminergic neurons was tested in rat nigrostriatal dopaminergic system in vivo and by using primary mesencephalic dopaminergic neuronal cultures in vitro . Intranigral infusion of AS (0-400 nmol) caused neurotoxicity reflected as a dose dependent decrease of striatal dopamine seven days after treatment. The effect of the 100 nmol dose was more pronounced when measured 50 days after the infusion. Neurotoxicity was also confirmed as a decrease of tyrosine hydroxylase positive neurons in the substantia nigra. Neither sulphononoate, a close structural analog of AS, nor sodiumnitrite caused changes in striatal dopamine, thus reflecting lack of neurotoxicity. In primary dopaminergic neuronal cultures AS reduced [ 3 H] dopamine uptake with concentrations over 200 μM confirming neurotoxicity. In line with the quite low efficacy to increase lipid peroxidation in vitro , infusion of AS into substantia nigra did not cause increased formation of fluorescent products of lipid peroxidation. These results support the hypothesis that AS derived species oxidize critical thiol groups, rather than membrane lipids, potentially leading to protein oxidation/dysfunction and demonstrated neurotoxicity. These findings may have pathophysiological relevance in case of excess formation of nitroxyl anion.  相似文献   
5.
The level of indole-3-acetic acid (IAA) was locally modified in cambial tissues of transgenic aspen (Populus tremula L. x Populus tremuloides Michx.). We also demonstrate the use of a linked reporter gene to visualize the expression of the iaa genes. The rate-limiting bacterial IAA-biosynthetic gene iaaM and the reporter gene for beta-glucuronidase (GUS), uidA, were each fused to the cambial-region-specific Agrobacterium rhizogenes rolC promoter and linked on the same T-DNA. In situ hybridization of the iaaM gene confirmed that histochemical analysis of GUS activity could be used to predict iaaM gene expression. Moreover, quantitative fluorometric analysis of GUS activity allowed estimation of the level of de novo production of IAA in transgenic lines carrying a single-copy insert of the iaaM, uidA T-DNA. Microscale analysis of the IAA concentration across the cambial region tissues showed an increase in IAA concentration of about 35% to 40% in the two transgenic lines, but no changes in the radial distribution pattern of IAA compared with wild-type plants. This increase did not result in any changes in the developmental pattern of cambial derivatives or the cambial growth rate, which emphasizes the importance of the radial distribution pattern of IAA in controlling the development of secondary xylem, and suggests that a moderate increase in IAA concentration does not necessarily stimulate growth.  相似文献   
6.
CBS (cystathionine beta-synthase) domains are found in proteins from all kingdoms of life, and point mutations in these domains are responsible for a variety of hereditary diseases in humans; however, the functions of CBS domains are not well understood. In the present study, we cloned, expressed in Escherichia coli, and characterized a family II PPase (inorganic pyrophosphatase) from Moorella thermoacetica (mtCBS-PPase) that has a pair of tandem 60-amino-acid CBS domains within its N-terminal domain. Because mtCBS-PPase is a dimer and requires transition metal ions (Co2+ or Mn2+) for activity, it resembles common family II PPases, which lack CBS domains. The mtCBS-PPase, however, has lower activity than common family II PPases, is potently inhibited by ADP and AMP, and is activated up to 1.6-fold by ATP. Inhibition by AMP is competitive, whereas inhibition by ADP and activation by ATP are both of mixed types. The nucleotides are effective at nanomolar (ADP) or micromolar concentrations (AMP and ATP) and appear to compete for the same site on the enzyme. The nucleotide-binding affinities are thus 100-10000-fold higher than for other CBS-domain-containing proteins. Interestingly, genes encoding CBS-PPase occur most frequently in bacteria that have a membrane-bound H+-translocating PPase with a comparable PP(i)-hydrolysing activity. Our results suggest that soluble nucleotide-regulated PPases act as amplifiers of metabolism in bacteria by enhancing or suppressing ATP production and biosynthetic reactions at high and low [ATP]/([AMP]+[ADP]) ratios respectively.  相似文献   
7.
8.
Bacterial biofilms resist host defenses and antibiotics partly because of their decreased metabolism. Some bacteria use proinflammatory cytokines, such as interleukin (IL)-1β, as cues to promote biofilm formation and to alter virulence. Although one potential bacterial IL-1β receptor has been identified, current knowledge of the bacterial IL-1β sensing mechanism is limited. In chronic biofilm infection, periodontitis, Aggregatibacter actinomycetemcomitans requires tight adherence (tad)-locus to form biofilms, and tissue destroying active lesions contain more IL-1β than inactive ones. The effect of IL-1β on the metabolic activity of A. actinomycetemcomitans biofilm was tested using alamarBlue™. The binding of IL-1β to A. actinomycetemcomitans cells was investigated using transmission electron microscopy and flow cytometry. To identify the proteins which interacted with IL-1β, different protein fractions from A. actinomycetemcomitans were run in native-PAGE and blotted using biotinylated IL-1β and avidin-HRP, and identified using mass spectroscopy. We show that although IL-1β slightly increases the biofilm formation of A. actinomycetemcomitans, it reduces the metabolic activity of the biofilm. A similar reduction was observed with all tad-locus mutants except the secretin mutant, although all tested mutant strains as well as wild type strains bound IL-1β. Our results suggest that IL-1β might be transported into the A. actinomycetemcomitans cells, and the trimeric form of intracellular ATP synthase subunit β interacted with IL-1β, possibly explaining the decreased metabolic activity. Because ATP synthase is highly conserved, it might universally enhance biofilm resistance to host defense by binding IL-1β during inflammation.  相似文献   
9.
Photoinhibition of PSII occurs at the same quantum efficiency from very low to very high light, which raises a question about how important is the rate of photosynthetic electron transfer in photoinhibition. We modulated electron transfer rate and light intensity independently of each other in lincomycin-treated pea leaves and in isolated thylakoids, in order to elucidate the specific effects of light and PSII electron transport on photoinhibition. Major changes in the rate of electron transport caused only small changes in the rate of photoinhibition, suggesting the existence of a significant photoinhibitory pathway that contains an electron-transfer-independent phase. We compared the action spectrum of photoinhibition with absorption spectra of PSII components that could function as photoreceptors of the electron-transfer-independent phase of photoinhibition and found that the absorption spectra of Mn(III) and Mn(IV) compounds resemble the action spectrum of photoinhibition, showing a steep decrease from UV-C to blue light and a low visible-light tail. Our results show that the release of a Mn ion to the thylakoid lumen is the earliest detectable step of both UV- and visible-light-induced photoinhibition. After Mn release from the oxygen-evolving complex, oxidative damage to the PSII reaction center occurs because the Mn-depleted oxygen-evolving complex cannot reduce P680+ normally.  相似文献   
10.
Concentration is one factor that is known to determine how metabolic gases influence the growth and secondary metabolism of plant tissues in culture. How actual gas bioavailability influences these processes has not been studied despite its potential importance in specialized applications. A simple model system, soybean [Glycine max (L.) Merr. cv. Acme] callus culture, was selected for experiments because exogenous cytokinin (6-benzylaminopurine; BAP) elicits two types of responses: (1) enhanced callus proliferation, and (2) rapid induction of the isoflavonoid daidzein (7,4′-dihydroxyisoflavone). Synthetic atmospheres supplying metabolic gases with higher or lower bioavailability than in air were created by replacing the nitrogen moiety in standard air with either helium or argon, respectively. Callus was cultured on agar or in liquid shake cultures according to standard procedures. At an optimal cytokinin concentration for stimulation of callus proliferation, 4.4 × 10−7 M BAP, increased diffusion rates for the metabolic gases resulted in greater weight gain in agar cultures. Weight gain was 11% higher for He-treated and 39% lower for Ar-treated cultures than for the nitrogen control. In contrast, there was no significant effect of metabolic gas diffusion rate on daidzein production in either agar or liquid cultures. Apart from the potential application of these synthetic atmospheres for enhancing plant tissue culture growth, they may have unique value for the space program as an effective way of replicating the gas exchange limitations posed for plants by microgravity (Ar atmosphere), and as a countermeasure for this limitation (He atmosphere).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号