首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   7篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  2000年   2篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
2.
3.
This paper proposes a new breeding strategy, marker-assisted introgression (MAI), to obtain lines of perennial species with a single introgressed fragment from a compatible species two generations after the interspecific hybrid. MAI allows enrichment of the genome of a species with genes from a wild or exotic relative in a short timeframe and with an intermediate step that allows a first exploration of genes/QTLs that the donor species can provide to the target crop. This method has three phases: (1) creating a large backcross one (BC1) population to select, with markers, a reduced number of individuals (15–30, called the prIL set) with a low number of introgressions; (2) phenotyping the prIL set for the traits of interest and inferring the inheritance and map position of segregating major genes/QTLs based on the known genotypes of the prILs; and (3) advancing selected lines carrying the traits of interest to a next generation of backcross or selfing to obtain individuals with a single introgression in the background of the elite commercial germplasm. The proof of concept of this strategy was implemented by using peach as the recurrent species and almond as the donor. The whole process can be done in 9–10 years as the identification of the first line with one introgression was after 5 years (2006–2011), and 4–5 additional years are needed for phenotypic evaluation of selected lines. The expansion of this method to other perennial clonally propagated crops and to other species of Prunus compatible with peach is discussed.  相似文献   
4.
EmrE is a bacterial multidrug transporter of the small multidrug resistance family, which extrudes large hydrophobic cations such as tetraphenylphosphonium (TPP(+)) out of the cell by a proton antiport mechanism. Binding measurements were performed on purified EmrE solubilized in dodecylmaltoside to determine the stoichiometry of TPP(+) binding; the data showed that one TPP(+) molecule bound per EmrE dimer. Reconstitution of purified EmrE at low lipid:protein ratios in either the presence or the absence of TPP(+) produced well ordered two-dimensional crystals. Electron cryo-microscopy was used to collect images of frozen hydrated EmrE crystals and projection maps were determined by image processing to 7A resolution. An average native EmrE projection structure was calculated from the c222 and p222(1) crystals, which was subsequently subtracted from the average of two independent p2 projection maps of EmrE with TPP(+) bound. The interpretation of the difference density image most consistent with biochemical data suggested that TPP(+) bound at the monomer-monomer interface in the centre of the EmrE dimer, and resulted in the movement of at least one transmembrane alpha-helix.  相似文献   
5.
Erythropoietin receptor (EpoR) activation is crucial for mature red blood cell production. The murine EpoR can also be activated by the envelope protein of the polycythemic (P) spleen focus forming virus (SFFV), gp55-P. Due to differences in the TM sequence, gp55 of the anemic (A) strain SFFV, gp55-A, cannot efficiently activate the EpoR. Using antibody-mediated immunofluorescence co-patching, we show that the majority of EpoR forms hetero-oligomers at the cell surface with gp55-P and, surprisingly, with gp55-A. The EpoR TM domain is targeted by gp55-P and -A, as only chimeric receptors containing EpoR TM sequences oligomerized with gp55 proteins. Both gp55-P and gp55-A are homodimers on the cell surface, as shown by co-patching. However, when the homomeric interactions of the isolated TM domains were assayed by TOXCAT bacterial reporter system, only the TM sequence of gp55-P was dimerized. Thus, homo-oligomerization of gp55 proteins is insufficient for full EpoR activation, and a correct conformation of the dimer in the TM region is required. This is supported by the failure of gp55-A-->P, a mutant protein whose TM domain can homo-oligomerize, to fully activate EpoR. As unliganded EpoR forms TM-dependent but inactive homodimers, we propose that the EpoR can be activated to different extents by homodimeric gp55 proteins, depending on the conformation of the gp55 protein dimer in the TM region.  相似文献   
6.
Electron microscopy of two-dimensional (2D) crystals has demonstrated potential for structure determination of membrane proteins. Technical limitations in large-scale crystallization screens have, however, prevented a major breakthrough in the routine application of this technology. Dialysis is generally used for detergent removal and reconstitution of the protein into a lipid bilayer, and devices for testing numerous conditions in parallel are not readily available. Furthermore, the small size of resulting 2D crystals requires electron microscopy to evaluate the results and automation of the necessary steps is essential to achieve a reasonable throughput. We have designed a crystallization block, using standard microplate dimensions, by which 96 unique samples can be dialyzed simultaneously against 96 different buffers and have demonstrated that the rate of detergent dialysis is comparable to those obtained with conventional dialysis devices. A liquid-handling robot was employed to set up 2D crystallization trials with the membrane proteins CopA from Archaeoglobus fulgidus and light-harvesting complex II (LH2) from Rhodobacter sphaeroides. For CopA, 1 week of dialysis yielded tubular crystals and, for LH2, large and well-ordered vesicular 2D crystals were obtained after 24 h, illustrating the feasibility of this approach. Combined with a high-throughput procedure for preparation of EM-grids and automation of the subsequent negative staining step, the crystallization block offers a novel pipeline that promises to speed up large-scale screening of 2D crystallization and to increase the likelihood of producing well-ordered crystals for analysis by electron crystallography.  相似文献   
7.
Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) protein and phosphoinositide signaling pathways. These channels were the first characterized effectors of the βγ subunits of G proteins. Because we currently lack structures of complexes between G proteins and Kir3 channels, their interactions leading to modulation of channel function are not well understood. The recent crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) has provided invaluable structural insight. However, it was not known whether this chimera could form functional K(+) channels. Here, we achieved the functional reconstitution of purified Kir3.1 chimera in planar lipid bilayers. The chimera behaved like a bona fide Kir channel displaying an absolute requirement for PIP(2) and Mg(2+)-dependent inward rectification. The channel could also be blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins. Remarkably, the presence of both activated Gα and Gβγ subunits was required for gating of the channel. These results confirm the Kir3.1 chimera as a valid structural and functional model of Kir3 channels.  相似文献   
8.
9.
There is evidence that the E3 ubiquitin ligases muscle ring finger-1 (MuRF1) and atrogin-1, which mediate the ubiquitination of certain proteins and thereby their proteolysis, are regulated by cyclical nutritional treatments varying in lysine content. In order to explore further the regulatory mechanisms involved in metabolic adaptation to dietary changes, we investigated the effects of daily variations in energy [2800 (E?) followed by 3200 kcal/kg (E+)], protein [230 (P+) followed by 150g/kg (P?)] or both [E?P+ followed by E+P?] on muscle protein metabolism in 2-week-old male broiler chickens. Growth performance was similar for all treatments. Expression of atrogin-1 and MuRF1 was changed by alternation of diets varying in protein (higher expression with P? vs. P+) and energy content (higher expression with E? vs. E+). The expression of atrogin-1 was regulated with mixed diets (increase in E+P? vs. E?P+) but not that of MuRF1. Such regulation may involve the mammalian target of rapamycin (mTOR), which was more phosphorylated with P+ than with P?. Eukaryotic initiation factor 4E binding protein, p70S6 kinase and ribosomal protein S6, which are mTOR targets known to control protein synthesis, were highly activated by increased protein content (P+ vs. P?). The mechanisms coordinating the protein synthesis/proteolysis balance remain to be characterized.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号