首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   34篇
  2021年   1篇
  2019年   1篇
  2016年   2篇
  2015年   3篇
  2014年   7篇
  2013年   5篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   7篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1990年   4篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.
Epstein-Barr virus (EBV) codes for at least three glycoproteins, gp350, gp220, and gp85. The two largest glycoproteins are thought to be involved in the attachment of the virus to its receptor on B cells, but despite the fact that gp85 induces neutralizing antibody, no function has been attributed to it. As an indirect approach to understanding the role of gp85 in the initiation of infection, we determined the point at which a neutralizing, monoclonal antibody that reacted with the glycoprotein interfered with virus replication. The antibody had no effect on virus binding. To examine the effect of the antibody on later stages of infection, the fusion assay of Hoekstra and colleagues (D. Hoekstra, T. de Boer, K. Klappe, and J. Wilshaut, Biochemistry 23:5675-5681, 1984) was adapted for use with EBV. The virus was labeled with a fluorescent amphiphile that was self-quenched at the high concentration obtained in the virus membrane. When the virus and cell membrane fused, there was a measurable relief of self-quenching that could be monitored kinetically. Labeling had no effect on virus binding or infectivity. The assay could be used to monitor virus fusion with lymphoblastoid lines or normal B cells, and its validity was confirmed by the use of fixed cells and the Molt 4 cell line, which binds but does not internalize the virus. The monoclonal antibody to gp85 that neutralized virus infectivity, but not a second nonneutralizing antibody to the same molecule, inhibited the relief of self-quenching in a dose-dependent manner. This finding suggests that gp85 may play an active role in the fusion of EBV with B-cell membranes.  相似文献   
2.
Characterization of envelope proteins of alcelaphine herpesvirus 1.   总被引:1,自引:0,他引:1       下载免费PDF全文
Alcelaphine herpesvirus 1 is a gammaherpesvirus which causes malignant catarrhal fever, an acute lymphoproliferative disorder of cattle and other susceptible Bovidae, which is almost invariably fatal. A preliminary analysis of proteins induced by the virus indicated that as many as six glycoproteins and one nonglycosylated molecule might be present in the virus envelope. Monoclonal antibodies selected for recognition of virion envelope proteins included two that recognized a complex of infected cell proteins, designated the gp115 complex, and neutralized virus infectivity in the absence of complement. The gp115 complex consisted of five glycoproteins of 115, 110, 105, 78, and 48 kilodaltons (kDa), and all except the 48-kDa species reacted with antibody in Western blots (immunoblots). Pulse-chase experiments analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions suggested that the 110-kDa protein was the precursor molecule which was processed by addition of sugars to 115 kDa. The 115-kDa protein was cleaved to form a disulfide-linked heterodimer of 78 and 48 kDa, which was the mature form of the molecule incorporated into the virion envelope. The glycoprotein contained N-linked sugars, but little or no O-linked sugar was present. The relative abundance of the mature protein and its ability to induce neutralizing antibodies suggest that it will prove useful to studies aimed at elucidating the biology and pathogenesis of alcelaphine herpesvirus 1.  相似文献   
3.
4.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   
5.
The entire 396 residue extracellular sequence of gE the HSV-1 Fc gamma-binding glycoprotein has been studied to determine epitopes binding to two mAb II-481 and 88S previously demonstrated to react with gE at or near the Fc gamma-binding regions. Overlapping 7-mers constructed from the established sequence were tested with mAb II-481 and 88S along with their Fab fragments. Control mAb of the same IgG 2b subclass as well as whole rabbit and human IgG and Fc were also tested for binding to overlapping linear sequences using the ELISA pin assay to map Fc gamma-binding regions. Six sequences PKTSWRRVS, GLYTLSV, QVASVVLVVQP, PAPPRSWP, CLYHPQLP, and ASTWTSRL were found that constituted major regions binding to the two different mAb of the same specificity. Glycine substitution for each residue within these sequences indicated that arginine 29, tryptophane 70, valine 144, valine 157, arginine 208, histidine 283, and arginine 305 constituted important portions of the II 481 mAb-reactive epitope. Many of the same regions along with one other, GPLHPSW, appeared to be involved in Fc gamma binding. Substitution of glycine for each residue indicated that histidine 67, tryptophane 70, valine 71, valine 157, valine 158, valine 160, valine 161, tryptophane 210, serine 279, cysteine 280, leucine 281, tyrosine 282, histidine 283, proline 284, glutamine 285, proline 287, tryptophane 302, and arginine 305 were important for Fc gamma-binding. Inhibition by gE peptides of rosetting of E sensitized with rabbit IgG antibody around HSV-1-infected cells, as well as inhibition of rosetting using F(ab)2 fragments of rabbit antibodies to these peptides was used to assay relative contributions of all seven regions to Fc gamma-binding activity. Our results provide a tentative map of mAb binding and Fc gamma-reactive sites on gE. mAb and Fc gamma binding of a limited number of individual antigenic amino acids widely distributed among the separate reactive regions suggest that many of the same separate residues contribute both to antigenicity as well as to Fc gamma-binding activity.  相似文献   
6.
7.
8.
Loss of the Epstein-Barr virus (EBV) genome from Akata Burkitt lymphoma (BL) cells is coincident with a loss of malignant phenotype, despite the fact that Akata and other EBV-positive BL cells express a restricted set of EBV gene products (type I latency) that are not known to overtly affect cell growth. Here we demonstrate that reestablishment of type I latency in EBV-negative Akata cells restores tumorigenicity and that tumorigenic potential correlates with an increased resistance to apoptosis under growth-limiting conditions. The antiapoptotic effect of EBV was associated with a higher level of Bcl-2 expression and an EBV-dependent decrease in steady-state levels of c-MYC protein. Although the EBV EBNA-1 protein is expressed in all EBV-associated tumors and is reported to have oncogenic potential, enforced expression of EBNA-1 alone in EBV-negative Akata cells failed to restore tumorigenicity or EBV-dependent down-regulation of c-MYC. These data provide direct evidence that EBV contributes to the tumorigenic potential of Burkitt lymphoma and suggest a novel model whereby a restricted latency program of EBV promotes B-cell survival, and thus virus persistence within an immune host, by selectively targeting the expression of c-MYC.  相似文献   
9.
STAT3 and STAT5 are constitutively activated and nuclear in nasopharyngeal carcinoma (NPC) cells. In normal signaling, STATs are only transiently activated. To investigate whether Epstein-Barr virus (EBV), and in particular the protein LMP1, contributes to sustained STAT phosphorylation and activation in epithelial cells, we examined STAT activity in two sets of paired cell lines, HeLa, an EBV-converted HeLa cell line, HeLa-Bx1, the NPC-derived cell line CNE2-LNSX, and an LMP1-expressing derivative, CNE2-LMP1. EBV infection was associated with a significant increase in the tyrosine-phosphorylated forms of STAT3 and STAT5 in HeLa-Bx1 cells. This effect correlated with LMP1 expression, since phosphorylated STAT3 and STAT5 levels were also increased in CNE2-LMP1 cells relative to the control CNE2-LNSX cells. No change was observed in STAT1 or STAT6 phosphorylation in these cell lines, nor was there a significant change in the levels of total STAT3, STAT5, STAT1, or STAT6 protein. Tyrosine phosphorylation allows the normally cytoplasmic STAT proteins to enter the nucleus and bind to their recognition sequences in responsive promoters. The ability of LMP1 to activate STAT3 was further established by immunofluorescence assays in which coexpression of LMP1 in transfected cells was sufficient to mediate nuclear relocalization of Flag-STAT3 and by an electrophoretic mobility shift assay which showed that LMP1 expression in CNE2-LNSX cells was associated with increased endogenous STAT3 DNA binding activity. In addition, the activity of a downstream target of STAT3, c-Myc, was upregulated in HeLa-Bx1 and CNE2-LMP1 cells. A linkage was established between interleukin-6 (IL-6)- and LMP1-mediated STAT3 activation. Treatment with IL-6 increased phosphorylated STAT3 levels in CNE2-LNSX cells, and conversely, treatment of CNE2-LMP1 cells with IL-6 neutralizing antibody ablated STAT3 activation and c-Myc upregulation. The previous observation that STAT3 activated the LMP1 terminal repeat promoter in reporter assays was extended to show upregulated expression of endogenous LMP1 mRNA and protein in HeLa-Bx1 cells transfected with a constitutively activated STAT3. A model is proposed in which EBV infection of an epithelial cell containing activated STATs would permit LMP1 expression. This in turn would establish a positive feedback loop of IL-6-induced STAT activation, LMP1 and Qp-EBNA1 expression, and viral genome persistence.  相似文献   
10.
Epstein-Barr virus is ubiquitous and is causally implicated in lymphoid and epithelial malignancies. Virus invades oropharyngeal mucosa and establishes latency in B lymphocytes. Reactivating lymphocytes shed virus into saliva for spread to new hosts. A complex of three virus glycoproteins, gH, gL and gp42, is essential for entry. B-cell entry requires binding of gp42 to human leukocyte antigen (HLA) class II whereas entry into epithelial cells lacking HLA class II requires complexes without gp42. To accommodate infection of each, the virus carries both three-part and two-part complexes. We show here that HLA class II in the virus-producing cell alters the ratio of three-part to two-part complexes. As a consequence, virus originating in epithelial cells efficiently infects B cells whereas B-cell derived virus better infects epithelial cells. This molecular switch is a novel strategy that could alter tropism of virus from epithelium to B cells and then back to epithelium in a new host.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号