首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   2篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1978年   1篇
排序方式: 共有44条查询结果,搜索用时 31 毫秒
1.
2.
Coenzyme Q10 is an important component of mitochondrial electron transport chain and antioxidant. Hyperthyroidism manifests hyperdynamic circulation with increased cardiac output, increased heart rate and decreased peripheral resistance. The heart is also under the oxidative stress in the hyperthyroidism. The aim of this study was to examine both how the coenzyme Q10 can affect heart ultrastructure in the hyperthyroidism and how the relationship between nitric oxide synthase (NOS) and heart damage and coenzyme Q10. Swiss Black C57 mice received 5 mg/kg L-thyroxine. Coenzyme Q10 (1.5 mg/kg) and L-thyroxine together was given to second group mice. Coenzyme Q10 and serum physiologic were applied to another two groups, respectively. All treatments were performed daily for 15 days by gavage. Free triiodothyronine and thyroxine were increased in two groups given L-thyroxine; thyroid-stimulating hormone level did not change. Hyperthyroid heart showed an increased endothelial NOS (eNOS) and inducible NOS (iNOS) immunoreactivity in the tissue. Coenzyme Q10 administration decreased these NOS immunoreactivities in the hyperthyroid animals. Cardiomyocytes of the hyperthyroid animals was characterized by abnormal shape and invaginated nuclei, and degenerative giant mitochondria. Desmosome plaques reduced in density. In hyperthyroid mice given coenzyme Q10, the structural disorganization and mitochondrial damage regressed. However, hearts of healthy mice given coenzyme Q10 displayed normal ultrastructure, except for increased mitochondria and some of them were partially damaged. Coenzyme Q10 increased the glycogen in the cardiomyocytes. In conclusion, coenzyme Q10 administration can prevent the ultrastructural disorganization and decrease the iNOS and eNOS increment in the hyperthyroid heart.  相似文献   
3.
Extracellular matrix (ECM)-degrading enzymes such as matrix metalloproteases (MMPs) play an essential role in the repair of infarcted tissue, which affects ventricular remodeling after myocardial infarction. ADAMTS1 (A disintegrin and metalloprotease with thrombospondin motifs), a newly discovered metalloprotease, was originally cloned from a cancer cell line, but little is known about its contribution to disease. To test the hypothesis that ADAMTS1 appears in infarcted myocardial tissue, we examined ADAMTS1 mRNA expression in a rat myocardial infarction model by Northern blotting, real-time RT-PCR and in situ hybridization. Normal endothelium expressed little ADAMTS1 mRNA, while normal myocardium expressed no detectable ADAMTS1 mRNA. Up-regulation of ADAMTS1 was demonstrated by Northern blot analysis and real-time RT-PCR at 3 h after coronary artery ligation. In situ hybridization revealed strong ADAMTS1 mRNA signals in the endothelium and myocardium in the infarcted heart, mainly in the infarct zone, at 3 h after myocardial infarction. The rapid and transient up-regulation of the ADAMTS1 gene in the ischemic heart was distinct from the regulatory patterns of other MMPs. Our study demonstrated that the ADAMTS1 gene is a new early immediate gene expressed in the ischemic endothelium and myocardium.  相似文献   
4.
We investigated whether 8-week treadmill training strengthens antioxidant enzymes and decreases lipid peroxidation in rat heart. The effects of acute exhaustive exercise were also investigated. Male rats (Rattus norvegicus, Sprague-Dawley strain) were divided into trained and untrained groups. Both groups were further divided equally into two groups where the rats were studied at rest and immediately after exhaustive exercise. Endurance training consisted of treadmill running 1.5 h day(-1), 5 days week(-1) for 8 weeks. For acute exhaustive exercise, graded treadmill running was conducted. Malondialdehyde level in heart tissue was not affected by acute exhaustive exercise in untrained and trained rats. The activities of glutathione peroxidase and glutathione reductase enzymes decreased by both acute exercise and training. Glutathione S-transferase and catalase activities were not affected. Total and non-enzymatic superoxide scavenger activities were not affected either. Superoxide dismutase activity decreased by acute exercise in untrained rats; however, this decrease was not observed in trained rats. Our results suggested that rat heart has sufficient antioxidant enzyme capacity to cope with exercise-induced oxidative stress, and adaptive changes in antioxidant enzymes due to endurance training are limited.  相似文献   
5.
The aim of this study was to evaluate the lipid peroxidation, nitric oxide (NO), and free radical scavenging enzyme activities in erythrocytes of zinc (Zn)-deficient rats and to investigate the relationship among these parameters in either group. Sixteen male rats with a weight of 40-50 g were used for the experiment. The rats were divided into control (n = 8) and Zn-deficient groups. At the end of the experiment, the animals were anesthetized with ketamine-HCl (Ketalar, 20 mg/kg(-1), i.p.), and the blood was collected by cardiac puncture after thoracotomy. Blood samples were collected in vacutainer tubes without and with K(3)-EDTA as anticoagulant. Erythrocyte catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GRD), glutathione-S-transferase (GST), superoxide dismutase (SOD) activities, total (enzymatic plus nonenzymatic) superoxide scavenger activity (TSSA), nonenzymatic superoxide scavenger activity (NSSA), antioxidant potential (AOP), and serum zinc (Zn) values in the Zn-deficient group were significantly lower than those of the control group, whereas NO and malondialdehyde (MDA) levels were significantly higher than those of the control group. The results show that Zn deficiency causes a decrease in antioxidant defense system and an increase in oxidative stress in erythrocyte of rats.  相似文献   
6.
Erdosteine is a mucolytic agent having antioxidant properties through its active metabolites in acute injuries induced by pharmacological drugs. This study was designed to investigate the renoprotective potential of Erdosteine against gentamicin (GM)-induced renal dysfunction by using Technetium-99 m dimercaptosuccinic acid (Tc-99 m DMSA) uptake and scintigraphy in rats. For this purpose, male Wistar rats were randomly allotted into one of the four experimental groups: Control, Erdosteine, GM, and GM + Erdosteine groups. GM and GM + Erdosteine groups received 100 mg/kg GM intramuscularly for 6 days. In addition, Erdosteine and GM + Erdosteine groups received 50 mg/kg Erdosteine orally for 6 days. Renal function tests were assessed by serum blood urea nitrogen (BUN), creatinine levels, as well as scintigraphic and tissue radioactivity measurements with Tc-99 m DMSA. Renal oxidative damage was determined by renal malondialdehyde (MDA) levels, by antioxidant enzyme activities; superoxide dismutase (SOD) and catalase (CAT) and activities of oxidant enzymes; xanthine oxidase (XO) and myeloperoxidase (MPO). GM administration resulted in marked renal lipid peroxidation, increased XO and MPO activities and decreased antioxidant enzyme activities. GM + Erdosteine group significantly had lower MDA levels, higher SOD and CAT activities and lower XO and MPO activities, when compared to GM. Also GM + Erdosteine had lower levels of serum BUN, creatinine and higher renal tissue Tc-99 m DMSA uptake and radioactivity with respect to GM. In conclusion, our results supported a protective role of Erdosteine in nephrotoxicity associated with GM treatment.  相似文献   
7.
8.
9.
The maintenance of viable and functional islets is critical in successful pancreatic islet transplantation from cadaveric sources. During the isolation procedure, islets are exposed to a number of insults including ischemia, oxidative stress and cytokine injury that cause a reduction in the recovered viable islet mass. A novel approach was designed in which streptozotocin (STZ)-damaged rat pancreatic islets (rPIs) were indirectly cocultured with rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) to maintain survival of the cultured rPIs. The results indicated that islets cocultured with rBM-MSCs secreted an increased level of insulin after 14 days, whereas non-cocultured islets gradually deteriorated and cell death occurred. The cocultivation of rBM-MSCs with islets and STZ-damaged islets showed the expression of IL6 and transforming growth factor-β1 in the culture medium, besides the expression of the antiapoptotic genes (Mapkapk2, Tnip1 and Bcl3), implying the cytoprotective, anti-inflammatory and antiapoptotic effects of rBM-SCs through paracrine actions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号