首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   765篇
  免费   88篇
  2021年   15篇
  2018年   6篇
  2017年   9篇
  2016年   9篇
  2015年   20篇
  2014年   15篇
  2013年   31篇
  2012年   28篇
  2011年   30篇
  2010年   27篇
  2009年   18篇
  2008年   32篇
  2007年   41篇
  2006年   19篇
  2005年   25篇
  2004年   23篇
  2003年   28篇
  2002年   27篇
  2001年   25篇
  2000年   21篇
  1999年   15篇
  1998年   17篇
  1997年   9篇
  1995年   9篇
  1993年   11篇
  1992年   13篇
  1991年   13篇
  1990年   12篇
  1989年   12篇
  1988年   17篇
  1987年   19篇
  1986年   9篇
  1985年   10篇
  1984年   15篇
  1983年   11篇
  1982年   7篇
  1981年   9篇
  1980年   6篇
  1979年   10篇
  1978年   9篇
  1977年   10篇
  1976年   9篇
  1975年   9篇
  1974年   9篇
  1973年   11篇
  1972年   11篇
  1970年   7篇
  1969年   14篇
  1968年   12篇
  1967年   10篇
排序方式: 共有853条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
Storage of cultures of Salmonella enteritidis PT4 at either 4 degrees or 8 degrees C before heating significantly increased heat sensitivity. The differences between fresh and stored cultures, which became apparent after 4-7 h, were more pronounced with cultures stored at the lower temperature and in those heated at 60 degrees rather than 55 degrees C. Incubation of the stored cultures in either egg or Lemco broth for 30 min at 37 degrees C prior to heating enabled the organisms to recover heat resistance.  相似文献   
5.
We have investigated the effects of intermolecular disulfide crosslinking and temperature-dependent insolubilization of nuclear proteins in vitro on the association of the polyoma large T antigen with the nuclear matrix in polyomavirus-infected mouse 3T6 cells. Nuclear matrices, prepared from polyomavirus-infected 3T6 cells by sequential extraction of isolated nuclei with 1% Triton X-100 (Triton wash), DNase I, and 2 M NaCl (high salt extract) at 4 degrees C, represented 18% of total nuclear protein. Incubation of nuclei with 1 mM sodium tetrathionate (NaTT) to induce disulfide crosslinks or at 37 degrees C to induce temperature-dependent insolubilization prior to extraction, transferred an additional 9-18% of the nuclear protein from the high salt extract to the nuclear matrix. This additional protein represented primarily an increased recovery of the same nuclear protein subset present in nuclear matrices prepared from untreated nuclei. Major constituents of chromatin including histones, hnRNP core proteins, and 98% of nuclear DNA were removed in the high salt extract following either incubation. Polyoma large T antigen was quantified in subcellular fractions by immunoblotting with rat anti-T ascites. Approximately 60-70% of the T antigen was retained in nuclei isolated in isotonic sucrose buffer at pH 7.2. Most (greater than 95%) of the T antigen retained in untreated nuclei was extracted by DNase-high salt treatment. Incubation at 37 degrees C or with NaTT transferred most (greater than 95%) of the T antigen to the nuclear matrix. T antigen solubilized from NaTT-treated matrices with 1% SDS sedimented on sucrose gradients as a large (50-S) complex. These complexes, isolated by immunoprecipitation with anti-T sera, were dissociated by reduction with 2-mercaptoethanol, and SDS-PAGE analysis revealed that T antigen was crosslinked in stoichiometric amounts to several host proteins: 150, 129, 72, and 70 kDa. These host proteins were not present in anti-T immunoprecipitates of solubilized nuclear matrices prepared from iodoacetamide-treated cells. Our results suggest that the majority of polyomavirus large T antigen in infected cells is localized to a specific subnuclear domain which is distinct from the bulk chromatin and is closely associated with the nuclear matrix.  相似文献   
6.
Incubation of campylobacter selective broth at 37°C for 48 h followed by selective plating and incubation at 43°C improved significantly the isolation rate of Campylobacter jejuni from naturally contaminated samples of river water and artificially contaminated samples of raw milk. The use of such a technique had no effect, however, on the isolation of C. jejuni from chicken skin.  相似文献   
7.
The formation of DNA adducts by the ultimate carcinogen 7r,8t-dihydroxy-9t,10t-oxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene (BPDE-I) has been implicated in the process of carcinogenesis. In a line of Chinese hamster ovary (CHO) cells designated AT3-2 and in two derivative mutant lines, UVL-1 and UVL-10, originally selected for hypersensitivity to UV-irradiation, we have measured the formation of BPDE-I: DNA adducts and the production of biological damage. The quantity and quality of BPDE-I: DNA adducts formed initially in the 3 cell lines are identical over a wide range of BPDE-I doses. However, the UVL lines are unable to remove adducts from their DNA, while the AT3-2 cells remove about 50% of the BPDE-I: DNA adducts in a 24-h incubation. Correlated with this, the UVL lines are more sensitive to the lethal effects of BPDE-I than are the AT3-2 cells. Mutant frequencies were measured at the aprt, hprt and oua loci and were found to increase linearly with BPDE-I: DNA adduct formation at doses which gave greater than 50% survival. At the hprt and oua loci, the efficiency of mutation induction was similar for AT3-2 and UVL-10 cells. UVL-1 cells showed slightly higher (within a factor of 2-3) mutant frequencies in response to BPDE-I compared to AT3-2 at these two loci. However, at the aprt locus the repair-deficient cells were much more highly mutable (9-15-fold) than the repair-proficient AT3-2 cells. Based on the measured average level of adduct formation, it is calculated that 15% of the BPDE-I: DNA adducts in the aprt gene are converted into mutations. However, the possibility exists that the aprt locus is subject to higher levels of modification by BPDE-I than is the bulk DNA, which would lead to an artifactually high apparent conversion frequency.  相似文献   
8.
Insights into the mechanisms of chemical carcinogenesis can sometimes be gained by comparing the effects of closely related chemicals which differ in carcinogenic potency. We have treated Chinese hamster ovary (CHO) cells with a non-carcinogenic metabolite of benzo[a]pyrene, 9r,10t-dihydroxy-7c,8c-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-III), and measured the formation and persistence of DNA adducts. We have correlated this binding data with cytotoxicity and mutagenicity in a DNA-repair-proficient CHO cell line (AT3-2) and in two derived lines, UVL-1 and UVL-10, which are unable to repair bulky DNA adducts. These data are compared with similar studies of the effects of the carcinogenic metabolite, 7r,8t-dihydroxy-9t,10t-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I). Synchronous fluorescence spectroscopy was used to measure the levels of BPDE-III-DNA adducts in treated cells. Adduct levels increased linearly with dose, but the absolute binding levels were about 30-fold lower than in comparable incubations with BPDE-I. Measurements of the removal of adducts derived from these two diol epoxides indicated no significant difference in the rate of repair measured 24 h post-treatment. When cells were treated with increasing doses of BPDE-III, survival curves were obtained which exhibited a shoulder region at low doses and an exponential decrease in plating efficiency at higher doses. By comparison of the D0's, the DNA-repair-deficient cell lines were found to be 4-5-fold more sensitive to the killing effects of BPDE-III than were the repair-proficient AT3-2 cells.  相似文献   
9.
The initiation of carcinogenesis by carcinogens such as 7r,8t-dihydroxy-9,10t-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-I) is thought to involve the formation of DNA adducts. However, the diastereomeric diol epoxide, 7r,8t-dihydroxy-9,10c-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE-II), also forms DNA adducts but is inactive in standard carcinogenesis models. We have measured the formation and loss of DNA adducts derived from BPDE-II in a DNA-repair-proficient line of Chinese hamster ovary (CHO) cells, AT3-2, and in two derived mutant cell lines, UVL-1 and UVL-10, which are unable to repair bulky DNA adducts. BPDE-II adducts were lost from cellular DNA in AT3-2 cells with a half-life of 13.8 h; this was about twice the rate found for BPDE-I adducts. BPDE-II adducts were also lost from DNA in UVL-1 and UVL-10 cells, but at a much slower rate. When purified DNA was modified in vitro with BPDE-II and then held at 37 degrees C, DNA adducts were removed at a rate identical to that seen in UVL-1 and UVL-10 cells, suggesting that the loss in these cells was not due to enzymatic DNA-repair processes but to chemical lability of the adducts. Mutant frequencies at the APRT and HPRT loci were measured at BPDE-II doses that resulted in greater than 20% survival, and were found to increase linearly with dose. In the DNA-repair-deficient cells, the HPRT locus was moderately hypermutable compared with AT3-2 cells (about 5-fold); the APRT locus was extremely hypermutable, giving about 25-fold higher mutant fractions in UVL-1 and UVL-10 than in AT3-2 cells at equal initial levels of binding. When we compared the mutational efficiency of BPDE-II at both loci in AT3-2 cells (the mutant frequency in mutants/10(6) survivors at a dose that resulted in one adduct per 10(6) base pairs) with our previous studies of BPDE-1, we found that BPDE-II was 4-5 times less efficient as a mutagen than BPDE-I. This difference in mutational efficiency could be explained in part by the increased rate of loss of BPDE-II adducts from the cellular DNA, part of which was due to an increased rate of enzymatic removal of these lesions compared with the removal of BPDE-I adducts.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号