首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   19篇
  2022年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   11篇
  2009年   5篇
  2008年   5篇
  2007年   8篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2002年   2篇
  2001年   4篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   5篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1954年   1篇
  1953年   1篇
排序方式: 共有132条查询结果,搜索用时 156 毫秒
1.
Fructosyl Transfer between 1-Kestose and Sucrose in Wheat Leaves   总被引:8,自引:2,他引:6       下载免费PDF全文
The labeling pattern of the sugar moieties of 1-kestose after in vivo pulse labeling with 14CO2 was not the same as that after in vitro labeling with 14C-sucrose. The two fructosyl residues of 1-kestose had similar specific radioactivities after in vitro synthesis, but after in vivo radiolabeling the specific radioactivity of the terminal fructosyl moiety was significantly less than the internal fructosyl moiety. Evidence is presented that the uneven specific radioactivity of in vivo radiolabeling results from enzymatic transfer of terminal fructosyl residue from 1-kestose to sucrose.  相似文献   
2.
Past research on kernel growth in wheat (Triticum aestivum) has shown that the kernel itself largely regulates the influx of sucrose for consequent starch synthesis in the endosperm of the grain. The first step in the conversion of sucrose to starch is catalyzed by sucrose synthase (EC 2.4.13). Sucrose synthase activity was assayed in developing endosperms from kernels differing in growth rate and in maximum dry weight accumulation. From 10 to 22 days after anthesis, sucrose synthase activity per wheat endosperm remained constant with respect to time in all grains. However, kernels which had higher rates of kernel growth and which achieved greatest maximum weight had consistently and significantly higher sucrose synthase activities at any point in time than did kernels with slower rates of dry matter accumulation and lower maximum weight. In addition, larger kernels had a significantly greater amount of water in which this activity could be expressed. Although the results do not implicate sucrose synthase as the “rate limiting” enzyme in wheat kernel growth, they do emphasize the importance of sucrose synthase activity in larger or more rapidly growing kernels, as compared to smaller slower growing kernels.  相似文献   
3.
Extraction of rat liver cytosol with 10% charcoal at 4 degrees C inactivates specific glucocorticoid-binding capacity. The steroid-binding capacity of extracted cytosol can be restored by adding dithiothreitol or by incubating with boiled liver cytosol at 20 degrees C in the presence of 10 mM sodium molybdate. Two components of boiled cytosol are required for receptor activation: NADPH and an endogenous heat-stable protein with an apparent Mr of 12,300 by Sephadex G-50 chromatography. This endogenous receptor-activating protein coelutes on Sephadex G-50 chromatography with endogenous thioredoxin activity, and it can be replaced in the activating system by purified Escherichia coli thioredoxin. These observations suggest that glucocorticoid receptors in cytosol preparations are maintained in a reduced, steroid-binding state by a NADPH-dependent, thioredoxin-mediated reducing system.  相似文献   
4.
Isolating the enzymes responsible for fructan synthesis in plants has been hampered by unsuitable assays used during purification. It is believed that there are two enzymes necessary for fructan synthesis in higher plants, one initiating synthesis utilizing sucrose as donor and the other elaborating the polymer using fructan oligomers as donor. In this paper, a rapid quantitative assay is described to measure the latter fructosyl transfer. The activity was absent from leaves that were not synthesizing fructan. Activity in crude extracts showed a hyperbolic dependence upon sucrose concentration. Activity against 1-kestose showed a pronounced optimum, suggesting that self-transfer also occurred.  相似文献   
5.
To establish whether several amino acids were equally able to enter the phloem of oat (Avena sativa L.) plants and be transported, several (14)C-labeled amino acids were applied individually to an abraded spot on a fully expanded source leaf. The base of an immature sink leaf was monitored with a GM tube for time and rate of arrival of radioactivity. Transport of (14)C-sucrose and (14)CO(2) assimilates was measured for a comparison. The applied l-serine, l-lysine, and l-leucine, as well as sucrose, entered the phloem and were transported to the sink leaf at rates between 1.16 and 1.83 cm/min. Transport velocity for CO(2) assimilates was 1.57 cm/min. A heat girdle near the top of the source leaf sheath blocked most transport, which indicated that transport was primarily through the phloem. Mass transfer rates for amino acids were only 3% as great as that for sucrose, suggesting different mechanisms of entry for sucrose than for amino acids into the phloem. The higher percentage of CO(2) assimilates mobilized to the sink leaf was attributed to the greater surface area of minor veins accessible to loading, as compared to those compounds supplied via an abraded spot. Serine was extensively metabolized in the source leaf, and radioactive products in the sink leaf mirrored those in the source leaf. Most radioactivity of lysine and leucine remained within these compounds in the source, path, and sink tissues. We concluded that there was no barrier to entry of amino acids into the phloem and transport therein. Data do not suggest a specific mechanism for entry of amino acids into the phloem.  相似文献   
6.
P R Housley 《Biochemistry》1990,29(14):3578-3585
Fluoride, in the presence of aluminum ions, reversibly inhibits the temperature-mediated inactivation of unoccupied glucocorticoid receptors in cytosol preparations from mouse L cells. The effect is concentration-dependent, with virtually complete stabilization of specific glucocorticoid-binding capacity at 2 mM fluoride and 100 microM aluminum. These concentrations of aluminum and fluoride are ineffective when used separately. Aluminum fluoride also stabilizes receptors toward inactivation by gel filtration and ammonium sulfate precipitation. Aluminum fluoride prevents temperature-dependent transformation of steroid-receptor complexes to the DNA-binding state. Aluminum fluoride does not inhibit calf intestine alkaline phosphatase, and unoccupied receptors inactivated by this enzyme in the presence of aluminum fluoride can be completely reactivated by dithiothreitol. The effects of aluminum fluoride are due to stabilization of the complex between the glucocorticoid receptor and the 90-kDa mammalian heat-shock protein hsp90, which suggests that aluminum fluoride interacts directly with the receptor. Endogenous thermal inactivation of receptors in cytosol is not accompanied by receptor dephosphorylation. However, inactivation is correlated with dissociation of hsp90 from the unoccupied receptor. These results support the proposal that hsp90 is required for the receptor to bind steroid and dissociation of hsp90 is sufficient to inactivate the unoccupied receptor.  相似文献   
7.
Trafficking of ionotropic glutamate receptors to the plasma membrane commonly requires occupation of the agonist binding sites. This quality control check does not typically involve receptor activation, as binding by competitive antagonists or to non-functional channels may also permit surface expression. The tetrameric kainate receptors can be assembled from five different subunits (GluK1–GluK5). While the “low-affinity” GluK1-3 subunits are able to produce functional homomeric receptors, the “high-affinity” GluK4 and GluK5 subunits require co-assembly with GluK1, 2, or 3 for surface expression. These two different types of subunits have distinct functional roles in the receptor. Therefore, we examined the relative importance of occupancy of the agonist site of the GluK2 or GluK5 subunit for surface expression of heteromeric receptors. We created subunits with a mutation within the S2 ligand-binding domain which decreased agonist affinity. Mutations at this site reduced functional surface expression of homomeric GluK2 receptors, but surface expression of these receptors could be increased with either a competitive antagonist or co-assembly with wild-type GluK5. In contrast, mutations in the GluK5 subunit reduced the production of functional heteromeric receptors at the membrane, and could not be rescued with either an antagonist or wild-type GluK2. These findings indicate that ligand binding to only the GluK5 subunit is both necessary and sufficient to allow trafficking of recombinant GluK2/K5 heteromers to the cell membrane, but that occupancy of the GluK2 site alone is not. Our results suggest a distinct role for the GluK5 subunit in regulating surface expression of heteromeric kainate receptors.  相似文献   
8.
9.
Colonization of roots by Pseudomonas chlororaphis O6 ( Pc O6) involves root surface coverage through surface motility and biofilm formation. Root colonization and the production of antifungal phenazines are important in the ability of the bacterium to protect plants against pathogens. In this in vitro study we report that both biofilm formation and phenazine production are differentially influenced by nutrition and the presence of polyethylene oxide/polypropylene oxide triblock copolymer surfactants (Pluronics). Such surfactants are used for many purposes including agricultural formulations. Four Pluronics differing in molecular weight and in hydrophobic/hydrophilic proportions had distinct effects on biofilm formation and secondary metabolite production, although each increased surface motility, termed swarming, to a similar extent. These findings show that Pluronics had specific metabolic impacts on the bacterium, where both up- and downregulation was achieved depending on the medium and the Pluronic composition. In environmental and agricultural settings, Pluronics may have unanticipated effects on soil microorganisms, while in bioprocessing these effects may be leveraged to regulate metabolite yield.  相似文献   
10.
Epithelial cadherin is a transmembrane protein that is essential in calcium-dependent cell-cell recognition and adhesion. It contains five independently folded globular domains in its extracellular region. Each domain has a seven-strand beta-sheet immunoglobulin fold. Short seven-residue peptide segments connect the globular domains and provide oxygens to chelate calcium ions at the interface between the domains (Nagar et al., Nature 1995;380:360-364). Recently, stability studies of ECAD2 (Prasad et al., Biochemistry 2004;43:8055-8066) were undertaken with the motivation that Domain 2 is a representative domain for this family of proteins. The definition of a domain boundary is somewhat arbitrary; hence, it was important to examine the effect of the adjoining linker regions that connect Domain 2 to the adjacent domains. Present studies employ temperature-denaturation and proteolytic susceptibility to provide insight into the impact of these linkers on Domain 2. The significant findings of our present study are threefold. First, the linker segments destabilize the core domain in the absence of calcium. Second, the destabilization due to addition of the linker segments can be partially reversed by the addition of calcium. Third, sodium chloride stabilizes all constructs. This result implies that electrostatic repulsion is a contributor to destabilization of the core domain by addition of the linkers. Thus, the context of Domain 2 within the whole molecule affects its thermodynamic characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号