首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   0篇
  2023年   1篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   13篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1963年   2篇
  1958年   1篇
  1957年   3篇
  1946年   1篇
  1945年   2篇
  1943年   1篇
  1940年   1篇
排序方式: 共有72条查询结果,搜索用时 109 毫秒
1.
2.
Creatine kinase (CK) isoenzymes catalyse the reversible transfer of a phosphoryl group from ATP onto creatine. This reaction plays a very important role in the regulation of intracellular ATP concentrations in excitable tissues. CK isoenzymes are highly resistant to proteases in native conditions. To appreciate localized backbone dynamics, kinetics of amide hydrogen exchange with deuterium was measured by pulse-labeling the dimeric cytosolic muscle CK isoenzyme. Upon exchange, the protein was digested with pepsin, and the deuterium content of the resulting peptides was determined by liquid chromatography coupled to mass spectrometry (MS). The deuteration kinetics of 47 peptides identified by MS/MS and covering 96% of the CK backbone were analyzed. Four deuteration patterns have been recognized: The less deuterated peptides are located in the saddle-shaped core of CK, whereas most of the highly deuterated peptides are close to the surface and located around the entrance to the active site. Their exchange kinetics are discussed by comparison with the known secondary and tertiary structures of CK with the goal to reveal the conformational dynamics of the protein. Some of the observed dynamic motions may be linked to the conformational changes associated with substrate binding and catalytic mechanism.  相似文献   
3.
4.
5.
Moraxella catarrhalis is an important pathogen in patients with chronic obstructive lung disease (COPD). While M. catarrhalis has been categorized as an extracellular bacterium so far, the potential to invade human respiratory epithelium has not yet been explored. Our results obtained by electron and confocal microscopy demonstrated a considerable potential of M. catarrhalis to invade bronchial epithelial (BEAS-2B) cells, type II pneumocytes (A549) and primary small airway epithelial cells (SAEC). Moraxella invasion was dependent on cellular microfilament as well as on bacterial viability, and characterized by macropinocytosis leading to the formation of lamellipodia and engulfment of the invading organism into macropinosomes, thus indicating a trigger-like uptake mechanism. In addition, the cells examined expressed TLR2 as well as NOD1, a recently found cytosolic protein implicated in the intracellular recognition of bacterial cell wall components. Importantly, inhibition of TLR2 or NOD1 expression by RNAi significantly reduced the M. catarrhalis-induced IL-8 secretion. The role of TLR2 and NOD1 was further confirmed by overexpression assays in HEK293 cells. Overall, M. catarrhalis may employ lung epithelial cell invasion to colonize and to infect the respiratory tract, nonetheless, the bacteria are recognized by cell surface TLR2 and the intracellular surveillance molecule NOD1.  相似文献   
6.
Shoot organogenesis was successfully achieved in petiole explants excised from 6 to 8-week old in vitro plantlets of yam Dioscorea rotundata P. cv. Kponan fissa, Dioscorea cayenensis L. cv. Krengle IB14 and cv. Krengle IB35, and Dioscorea alata L. cv. Bete bete. Only the basipetal portion of the petiole acquired competence, and plants regenerated within 21?days on MS medium supplemented with 2?% sucrose, 100?mg/l myo-inositol, 10???M kinetin and 1.5?mM putrescine referred to as yam regeneration medium (YRM). Plant regeneration was significantly (p?<?0.01) higher (42?%) with 2?% sucrose compared to 1, 3 and 4?% sucrose which produced 4, 25 and 15?% regeneration respectively. The age of the donor yam plantlet was critical to regeneration, and the highest regeneration efficiency was obtained with explants from 8-week old plantlets. Addition of the antioxidants lipoic acid (19.4???M), and l-cysteine (28.5???M) to the culture medium stimulated axillary branching in regenerated shoots. Among the four yam cultivars tested, cv. Kponan fissa, cv. Krengle IB14 and cv. Bete bete had similar response at 10???M kinetin, while the cv. Krengle IB35 regenerated best at a lower concentration of kinetin (0.5???M).  相似文献   
7.
8.
The pH parameter of soil plays a key role for plant nutrition as it is affecting the availability of minerals and consequently determines plant growth. Although the mechanisms by which root perceive the external pH is still unknown, the impact of external pH on tissue growth has been widely studied especially in hypocotyl and root. Thanks to technological development of cell imaging and fluorescent sensors, we can now monitor pH in real time with at subcellular definition. In this focus, fluorescent dye-based, as well as genetically-encoded pH indicators are discussed especially with respect to their ability to monitor acidic pH in the context of primary root. The notion of apoplastic subdomains is discussed and suggestions are made to develop fluorescent indicators for pH values below 5.0.

The pH parameter of soil plays a key role for plant nutrition as it is affecting the availability of minerals and consequently determines plant growth. Although the mechanisms by which root perceive the external pH is still unknown, the impact of external pH on tissue growth has been widely studied especially in hypocotyl and root. Thanks to technological development of cell imaging and fluorescent sensors, we can now monitor pH in real time with at subcellular definition. In this focus, fluorescent dye-based, as well as genetically-encoded pH indicators are discussed especially with respect to their ability to monitor acidic pH in the context of primary root. The notion of apoplastic subdomains is discussed and suggestions are made to develop fluorescent indicators for pH values below 5.0.  相似文献   
9.
Legionella pneumophila, a Gram-negative facultative intracellular bacterium, causes severe pneumonia (Legionnaires' disease). Type I interferons (IFNs) were so far associated with antiviral immunity, but recent studies also indicated a role of these cytokines in immune responses against (intracellular) bacteria. Here we show that wild-type L. pneumophila and flagellin-deficient Legionella, but not L. pneumophila lacking a functional type IV secretion system Dot/Icm, or heat-inactivated Legionella induced IFNbeta expression in human lung epithelial cells. We found that factor (IRF)-3 and NF-kappaB-p65 translocated into the nucleus and bound to the IFNbeta gene enhancer after L. pneumophila infection of lung epithelial cells. RNA interference demonstrated that in addition to IRF3, the caspase recruitment domain (CARD)-containing adapter molecule IPS-1 (interferon-beta promoter stimulator 1) is crucial for L. pneumophila-induced IFNbeta expression, whereas other CARD-possessing molecules, such as RIG-I (retinoic acid-inducible protein I), MDA5 (melanoma differentiation-associated gene 5), Nod27 (nucleotide-binding oligomerization domain protein 27), and ASC (apoptosis-associated speck-like protein containing a CARD) seemed not to be involved. Finally, bacterial multiplication assays in small interfering RNA-treated cells indicated that IPS-1, IRF3, and IFNbeta were essential for the control of intracellular replication of L. pneumophila in lung epithelial cells. In conclusion, we demonstrated a critical role of IPS-1, IRF3, and IFNbeta in Legionella infection of lung epithelium.  相似文献   
10.
For centuries, perfumes consisted in a combination of natural ingredients, mainly of plant origin. From the 19th century on, the advent of organic synthesis enabled the deployment of multiple synthetic olfactory notes, enriching significantly the perfumers’ portfolio. Chemistry is ever since the foundation of modern perfumery. However, sustainable‐minded consumers, massively rejecting synthetics for safety and ecological issues, engaged a global return to nature in numerous sectors, and the fragrance industry is not outdone. Sustainable extraction of natural products, making use of innovative technologies, process intensification and agro‐based solvents, constitutes the answer to develop eco‐conceived fragrant ingredients covering every olfactory family without endangering biodiversity any further. The objective of this review is to draw a clear picture of where those technological advances are today and to assess the ones that may be effectively transposed at the industrial scale tomorrow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号