首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   481篇
  免费   22篇
  2024年   1篇
  2021年   9篇
  2020年   4篇
  2019年   8篇
  2018年   4篇
  2017年   8篇
  2016年   12篇
  2015年   16篇
  2014年   20篇
  2013年   30篇
  2012年   38篇
  2011年   28篇
  2010年   15篇
  2009年   15篇
  2008年   35篇
  2007年   36篇
  2006年   35篇
  2005年   36篇
  2004年   28篇
  2003年   24篇
  2002年   24篇
  2001年   5篇
  2000年   12篇
  1999年   10篇
  1998年   4篇
  1997年   6篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   5篇
  1982年   2篇
  1981年   1篇
  1980年   6篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有503条查询结果,搜索用时 15 毫秒
1.
2.
3.
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine protein kinase that is rapidly activated in response to various growth factors and tumor promoters in mammalian cultured cells. The kinase cascade including MAPK and its direct activator, MAPK kinase (MAPKK), is now believed to transmit various extracellular signals into their intracellular targets in eukaryotic cells. It has been reported that activation of MAPKK and MAPK occurs during the meiotic maturation of oocytes in several species, including Xenopus laevis . Studies with neutralizing antibodies against MAPKK, MAPK phosphatases and constitutively active MAPKK or MAPK have revealed a crucial role of the MAPKK/MAPK cascade in a number of developmental processes in Xenopus oocytes and embryos.  相似文献   
4.
In the present study, anti-metastatic effect of Z-100 on the spontaneous pulmonary metastases of Lewis lung carcinoma (3LL) was examined in an attempt to regulate suppressor T cells. When Z-100 (10 mg/kg) was daily injected i.p. after 3LL inoculation, survival rate of these mice was increased significantly (p<0.05). In addition, the number of pulmonary metastatic colonies of 3LL in Z-100-treated mice were significantly decreased by 38% at 21 days, as compared with that of control mice (p<0.05). Along with the decrease of pulmonary metastases, suppressor cell activity was also gradually reduced in these mice, as compared with that of control mice. When splenic suppressor cells (5×107 cells) from 3LL-bearing mice were adoptively transferred into normal mice (recipients) just before inoculation of 3LL, the development of pulmonary metastases in recipients was significantly accelerated. However, splenocytes from 3LL-bearing mice treated with Z-100 did not affect the development of pulmonary metastasis. The potential to accelerate the metastasis of splenic mononuclear cells from 3LL-bearing mice was decreased significantly by the treatment with anti-Thy 1.2 monoclonal antibody (mAb), anti-Lyt 2.2 mAb or anti-CD11b mAb followed by complement. IL-4 activity in the sera of 3LL-bearing mice was detected 15 days after tumor inoculation (13 pg/ml) and gradually increased (18 pg/ml) 20 days after tumor inoculation. However, when Z-100 (10 mg/kg) was daily injected i.p., IL-4 activity in sera was decreased significantly, and the IL-4 activity was not detected in these mice on day 20. These results suggest that Z-100 could inhibit the pulmonary metastases in 3LL-bearing mice through the inhibition of suppressor T cell activity and a possible candidate of its effector molecule, IL-4.  相似文献   
5.
Two soluble glycoproteins containing hydroxyproline were extractedfrom cultured tobacco cells (cell line XD-6S) and purified byion-exchange and gel-filtration chromatography. On DEAR-cellulosecolumn chromatography in the final step of the purification,one was eluted at 90 mM NaCl and the other at 120 mM as singlepeak. Both purified glycoproteins were also sedimented as singlepeak with an ultracentrifugation. The S20,w values were 6.1for the former and 7.0 for the latter. These glycoproteins were composed of 94% polysaccharide and6% protein in the former, and 87% polysaccharide and 13% proteinin the latter. The sugar moiety consisted of galactose, arabinose,rhamnose, and uronic acid in both. Hydroxyproline accountedfor 12% in the former and 20% in the latter amino acid composition.A high content of alanine in both (14 and 15%) was one of thedistinctive characteristics of these soluble glycoproteins. These intracellular soluble hydroxyproline-containing glycoproteinswere not labelled within 30 min of incubation with 3H-proline,although the radioactivity was rapidly incorporated (within15 min) into the intracellular macromolecules. (Received February 21, 1978; )  相似文献   
6.
7.
Molecular identification of endogenous enzymes and biologically active substances from complex biological sources remains a challenging task, and although traditional biochemical purification is sometimes regarded as outdated, it remains one of the most powerful methodologies for this purpose. While biochemical purification usually requires large amounts of starting material and many separation steps, we developed an advanced method named “proteomic correlation profiling” in our previous study. In proteomic correlation profiling, we first fractionated biological material by column chromatography, and then calculated each protein''s correlation coefficient between the enzyme activity profile and protein abundance profile determined by proteomics technology toward fractions. Thereafter, we could choose possible candidates for the enzyme among proteins with a high correlation value by domain predictions using informatics tools. Ultimately, this streamlined procedure requires fewer purification steps and reduces starting materials dramatically due to low required purity compared with conventional approaches. To demonstrate the generality of this approach, we have now applied an improved workflow of proteomic correlation profiling to a drug metabolizing enzyme and successfully identified alkaline phosphatase, tissue-nonspecific isozyme (ALPL) as a phosphatase of CS-0777 phosphate (CS-0777-P), a selective sphingosine 1-phosphate receptor 1 modulator with potential benefits in the treatment of autoimmune diseases including multiple sclerosis, from human kidney extract. We identified ALPL as a candidate protein only by the 200-fold purification and only from 1 g of human kidney. The identification of ALPL as CS-0777-P phosphatase was strongly supported by a recombinant protein, and contribution of the enzyme in human kidney extract was validated by immunodepletion and a specific inhibitor. This approach can be applied to any kind of enzyme class and biologically active substance; therefore, we believe that we have provided a fast and practical option by combination of traditional biochemistry and state-of-the-art proteomic technology.Molecular identification for an enzyme reaction or biologically active substance in an organism is challenging, although molecular biological methodologies such as expression cloning (1), recombinant protein panel (2) and RNAi screening (3) have been introduced recently as alternative approaches. Conventional biochemical purification has provided a number of successes and thus still remains a powerful, though labor-intensive strategy.In the traditional protein purification, it had been necessary to purify an individual protein nearly to homogeneity at a microgram amount so that the purified protein could be analyzed by N-terminal amino acid sequencing. Protein identification by mass spectrometry subsequently revolutionized this technology by enabling identification of proteins at much lower abundances: individual proteins could then be associated with specific activities as soon as a band in SDS-PAGE could be observed, even when the purified protein was far from homogeneity (46). Although this streamlined the workflow by reducing the required starting materials as well as the separation steps for protein purification, a faster and more generalized approach from smaller starting material has still been desired because some proteins are physiochemically difficult for example in solubilization and stability. To solve these problems, we devised a proteomic correlation profiling methodology (7).The basic concept of proteomic correlation profiling was originally developed by Andersen et al. (8). They quantitatively profiled hundreds of proteins across several centrifugation fractions by mass spectrometry and identified centrosomal proteins by calculating the correlation of these protein expression profiles with already known centrosomal proteins. In the following study, Foster et al. applied this strategy to map more than 1400 proteins to ten subcellular locations (9). Although these studies used centrifugation as a separation method and a known marker profile as a standard for correlation, we extended this concept to use chromatography as a separation method and kinase activity as a basis for comparison; our approach successfully identified a kinase responsible for phosphorylation of peptide substrates just after one step chromatography, and was termed proteomic correlation profiling (7). Independently, Kuromitsu et al. reported identification of an active substance in the serum response element-dependent luciferase assay from interstitial cystitis urine after three-step chromatography by a similar concept (10). In theory, this general proteomic correlation profiling strategy can be adapted to any kind of separation method and activity profile but no other example has been reported thus far, therefore, actual examples where the method can be applied to other enzyme classes are required to prove its generality.Multiple sclerosis is the most common autoimmune disorder of the central nerve system in which the fatty myelin sheaths around the axons of the brain and spinal cord are damaged, leading to demyelination and scarring (11, 12). Until recently, the standard treatments for multiple sclerosis such as interferon beta, glatiramer acetate, mitoxantrone, and natalizumab would often cause severe adverse events (13, 14), providing an opportunity for development of less dangerous treatments for this disease. However, in 2010, Food and Drug Administration approved fingolimod (Gilenya; chemical structure in Fig. 1) as the first oral medicine, and recommended this as a first-line treatment for relapsing-remitting multiple sclerosis, opening up a new therapeutic approach to the disease (15).Open in a separate windowFig. 1.The chemical structures of CS-0777, fingolimod and their phosphorylated derivatives.Sphingosine 1-phosphate receptor 1 (S1P1)1 modulators are emerging as a new class of drugs with potential therapeutic application in multiple sclerosis (15), and fingolimod is a nonselective sphingosine 1-phosphate (S1P) receptor modulator (1618, 21, 22). Given its structural similarity to sphingosine, fingolimod is phosphorylated in vivo by sphingosine kinase, in particular sphingosine kinase 2 (SPHK2) (19, 20), and the fingolimod-phosphate (fingolimod-P, Fig. 1) binds to and activates four G protein-coupled S1P receptors (21, 22). By this mechanism, fingolimod-P induces internalization of S1P1 on lymphocytes, blocking the ability of the receptor to support lymphocyte egress and recirculation through secondary lymphoid organs. This suppresses immune responses and is presumably the main immunomodulatory mode of action of fingolimod.CS-0777 (Fig. 1) is a novel selective S1P1 modulator (23). Although the immunomodulatory effects are supposed to be mainly mediated by S1P1, some lines of evidence suggest that the agonist activity on S1P receptor 3 (S1P3) could cause acute toxicity and cardiovascular deregulation, including bradycardia in rodents (24, 25). Thus, CS-0777 was designed to have more selectivity on S1P1 over S1P3 in contrast to fingolimod-P which has potent agonistic activity for S1P3, S1P4, and S1P5 in vitro (22). Like fingolimod, CS-0777 is also a prodrug phosphorylated in vivo, and the phosphorylated CS-0777 (CS-0777-P, Fig. 1) agonizes S1P1 with more than 300-fold selectivity relative to S1P3 whereas CS-0777-P has weaker effects on S1P5 and no activity on S1P2 (23). CS-0777 showed immunosuppressive activity in mouse and rat models of experimental autoimmune encephalitis, animal models for multiple sclerosis. In healthy volunteers, single oral doses of CS-0777 caused marked, dose-dependent decreases in numbers of circulating lymphocytes, including marked and reversible decreases in circulating T and B cells (26). Furthermore, in multiple sclerosis patients, single oral doses of CS-0777 caused dose-dependent decreases in circulating lymphocytes, with a slightly greater suppression of CD4+ versus CD8+ T cells. Therefore, CS-0777 would alter immune responses solely through activation of S1P1 without S1P3 modulation in humans, which could circumvent a bradycardia adverse effect, although the relationships associating selectivity of S1P1 to S1P3 with bradycardia in humans are not fully understood (12).Orally administrated CS-0777 is phosphorylated and rapidly reaches equilibrium with CS-0777-P as in the case of fingolimod (22), suggesting that the high kinase activity in blood is balanced by phosphatases. Therefore, identification of a phosphatase, the inactivating enzyme of an active metabolite, as well as identification of a kinase, the activating enzyme of a prodrug, are critical to fully understand the mechanism of action at the molecular level for both CS-0777 and fingolimod. Sphingosine kinase 2 (SPHK2) was identified as the major kinase of fingolimod (21, 28, 29) and lipid phosphate phosphatase 3 (LPP3) was reported to be a phosphatase for fingolimod-P dephosphorylation (30), although contribution of LPP3 in vivo has not been fully studied. In our previous work, we have identified CS-0777 kinases in human blood as fructosamine 3-kinase-related protein (FN3K-RP) and fructosamine 3-kinase (FN3K) (6), whereas the phosphatase of CS-0777-P had not been identified thus far.In this study, we have successfully identified alkaline phosphatase, tissue-nonspecific isozyme (ALPL) as the major CS-0777-P phosphatase candidate in the human kidney by proteomic correlation profiling. According to available information, this is the first report applying proteomic correlation profiling to enzyme classes other than kinases; similarly, we believe this to be first application of proteomic correlation profiling to human tissue extract, which therefore has opened up wide usage of proteomic correlation profiling for all types of enzyme identification.  相似文献   
8.
Mycorrhizal fungi of mycoheterotrophic Burmannia nepalensis and B. itoana were identified by molecular identification methods based on fungal SSU nrDNA region. In B. nepalensis, RFLP patterns and sequences from all root samples from 14 individuals were identical. A single fungal sequence was also obtained from B. itoana roots from three individuals. Phylogenetic analysis showed that the fungal sequences from these two species are included in Glomeraceae (former Glomus group A). Our results indicate that the two Burmannia species are associated with narrow phylogenetic ranges of arbuscular mycorrhizal fungi.  相似文献   
9.
Bmi1 is overexpressed in a variety of human cancers including gastrointestinal cancer. The high expression level of Bmi1 protein is associated with poor prognosis of gastrointestinal cancer patients. On the other hand, tumor-associated macrophages (TAMs) contribute to tumor growth, invasion, and metastasis by producing various mediators in the tumor microenvironment. The aim of this study was to investigate TAM-mediated regulation of Bmi1 expression in gastrointestinal cancer. The relationship between TAMs and Bmi1 expression was analyzed by immunohistochemistry and quantitative real-time PCR (qRT-PCR), and results showed a positive correlation with tumor-infiltrating macrophages (CD68 and CD163) and Bmi1 expression in cancer cells. Co-culture with TAMs triggered Bmi1 expression in cancer cell lines and enhanced sphere formation ability. miRNA microarray analysis of a gastric cancer cell line co-cultured with macrophages was conducted, and using in silico methods to analyze the results, we identified miR-30e* as a potential regulator of Bmi1 expression. Luciferase assays using miR-30e* mimic revealed that Bmi1 was a direct target for miR-30e* by interactions with the putative miR-30e* binding sites in the Bmi1 3′ untranslated region. qRT-PCR analysis of resected cancer specimens showed that miR-30e* expression was downregulated in tumor regions compared with non-tumor regions, and Bmi1 expression was inversely correlated with miR-30e* expression in gastric cancer tissues, but not in colon cancer tissues. Our findings suggest that TAMs may cause increased Bmi1 expression through miR-30e* suppression, leading to tumor progression. The suppression of Bmi1 expression mediated by TAMs may thus represent a possible strategy as the treatment of gastrointestinal cancer.  相似文献   
10.
High cholesterol turnover catalyzed by cholesterol 24‐hydroxylase is essential for neural functions, especially learning. Because 24(S)‐hydroxycholesterol (24‐OHC), produced by 24‐hydroxylase, induces apoptosis of neuronal cells, it is vital to eliminate it rapidly from cells. Here, using differentiated SH‐SY5Y neuron‐like cells as a model, we examined whether 24‐OHC is actively eliminated via transporters induced by its accumulation. The expression of ABCA1 and ABCG1 was induced by 24‐OHC, as well as TO901317 and retinoic acid, which are ligands of the nuclear receptors liver X receptor/retinoid X receptor (LXR/RXR). When the expression of ABCA1 and ABCG1 was induced, 24‐OHC efflux was stimulated in the presence of high‐density lipoprotein (HDL), whereas apolipoprotein A‐I was not an efficient acceptor. The efflux was suppressed by the addition of siRNA against ABCA1, but not by ABCG1 siRNA. To confirm the role of each transporter, we analyzed human embryonic kidney 293 cells stably expressing human ABCA1 or ABCG1; we clearly observed 24‐OHC efflux in the presence of HDL, whereas efflux in the presence of apolipoprotein A‐I was marginal. Furthermore, the treatment of primary cerebral neurons with LXR/RXR ligands suppressed the toxicity of 24‐OHC. These results suggest that ABCA1 actively eliminates 24‐OHC in the presence of HDL as a lipid acceptor and protects neuronal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号