首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   37篇
  2023年   3篇
  2019年   1篇
  2013年   1篇
  2010年   1篇
  2006年   1篇
  2004年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   9篇
  1990年   4篇
  1989年   6篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1982年   5篇
  1981年   4篇
  1980年   4篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
1.
Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria   总被引:11,自引:0,他引:11  
The ability of Butyrivibrio fibrisolvens and other ruminal bacteria (6 species, 18 strains) to ferment a crude xylan from wheat straw or to ferment xylans from larchwood or oat spelts was studied. Liquid cultures were monitored for carbohydrate utilization, cell growth (protein), and fermentation acid production. B. fibrisolvens 49, H17c, AcTF2, and D1 grew almost as well on one or more of the xylans as they did on cellobiose-maltose. B. fibrisolvens 12, R28, A38, X10C34, ARD22a, and X6C61 exhibited moderate growth on xylans. Partial fermentation of xylans was observed with Bacteroides ruminicola B14, Bacteroides succinogenes S85, Ruminococcus albus 7, Ruminococcus flavefaciens C94 and FD1, and Succinivibrio dextrinosolvens 22B. All xylans tested appeared to have a small fraction of carbohydrate that supported low levels of growth of nonxylanolytic strains such as Selenomonas ruminantium HD4. Compared to growth on hexoses, the same array of fermentation acids was produced upon growth on xylans for most strains; however, reduced lactate levels were observed for B. fibrisolvens 49 and Selenomonas ruminantium HD4. Measurements of enzyme activities of B. fibrisolvens AcTF2, 49, H17c, and D1 indicated that the xylobiase activities were cell associated and that the xylanase activities were predominantly associated with the culture fluid. The pattern of expression of these enzymes varied both between strains and between the carbon sources on which the strains were grown.  相似文献   
2.
A gene coding for xylanase activity in the ruminal bacterial strain 23, the type strain of Bacteroides ruminicola, was cloned into Escherichia coli JM83 by using plasmid pUC18. AB. ruminicola 23 genomic library was prepared in E. coli by using BamHI-digested DNA, and transformants were screened for xylanase activity on the basis of clearing areas around colonies grown on Remazol brilliant blue R-xylan plates. Six clones were identified as being xylanase positive, and all six contained the same 5.7-kilobase genomic insert. The gene was reduced to a 2.7-kilobase DNA fragment. Xylanase activity produced by the E. coli clone was found to be greater than that produced by the original B. ruminicola strain. Southern hybridization analysis of genomic DNA from the related B. ruminicola strains, D31d and H15a, by using the strain 23 xylanase gene demonstrated one hybridizing band in each DNA.  相似文献   
3.
4.
Highly methylated, long-chain celluloses strongly inhibited cellulose degradation by several species of cellulolytic bacteria of ruminal origin. Specifically, the inhibitory effects of methylcellulose on the growth of Ruminococcus flavefaciens FD1 were concentration dependent, with complete inhibition at 0.1% (wt/vol). However, methylcellulose did not inhibit growth on cellobiose or cellulooligosaccharides. Mixtures of methylated cellulooligosaccharides having an average degree of polymerization of 6.7 to 9.5 inhibited cellulose degradation, but those with an average degree of polymerization of 1.0 to 4.5 did not. Similar inhibitory effects by methylcellulose and, to a lesser extent, by methyl cellulooligosaccharides were observed on cellulase activity, as measured by hydrolysis of p-nitrophenyl-beta-d-cellobioside. R. flavefaciens cultures hydrolyzed cellulooligosaccharides to cellobiose and cellotriose as final end products. Cellopentaose and cellohexaose were cleaved to these end products, but cellotetraose was also formed from cellohexaose. Methylcellulose did not inhibit hydrolysis of cellulooligosaccharides. These data are consistent with the presence of separate cellulase (beta-1,4-glucanase) and cellulodextrinase activities in R. flavefaciens.  相似文献   
5.
The xylanase gene from the ruminal bacterium Bacteroides ruminicola 23 is highly expressed in colonic Bacteroides species when carried on plasmid pVAL-RX. In order to stabilize xylanase expression in the absence of antibiotic selection, the xylanase gene was introduced into the chromosome of Bacteroides thetaiotaomicron 5482 by using suicide vector pVAL-7. Xylanase activity in the resulting strain, B. thetaiotaomicron BTX, was about 30% of that observed in B. thetaiotaomicron 5482 containing the xylanase gene on pVAL-RX. The data obtained from continuous culture experiments using antibiotic-free medium showed that expression of xylanase activity in strain BTX was extremely stable, with no demonstrated loss of the inserted xylanase gene over 60 generations, with dilution rates from 0.42 to 0.03 h-1. In contrast, the plasmid-borne xylanase gene was almost completely lost by 60 generations in the absence of antibiotic selection. Incubation of strain BTX with oatspelt xylan resulted in the degradation of more than 40% of the xylan to soluble xylooligomers. The stability of xylanase expression in B. thetaiotaomicron BTX suggests that this microorganism might be suitable for introduction into the rumen and increased xylan degradation.  相似文献   
6.
Most strains of Butyrivibrio fibrisolvens are known to produce extracellular polysaccharides (EPs). However, the rheological and functional properties of these EPs have not been determined. Initially, 26 strains of Butyrivibrio were screened for EP yield and apparent viscosities of cell-free supernatants. Yields ranged from less than 1.0 to 16.3 mg per 100 mg of glucose added to the culture. Viscosities ranged from 0.71 to 5.44 mPa.s. Five strains (CF2d, CF3, CF3a, CE51, and H10b) were chosen for further screening. The apparent viscosity of the EP from each of these strains decreased by only 50 to 60% when the shear rate was increased from 20 to 1,000 s-1. Strain CE51 produced the EP having the highest solution viscosity. A detailed comparison of shear dependency of the EP from strain CF3 with xanthan gum showed that this EP was less shear sensitive than xanthan gum and, at a shear rate of 1,000 s-1, more viscous. EPs from strains CF3 and H10b were soluble over a wide range of pH (1 to 13) in 80% (vol/vol) ethanol-water or in 1% (wt/vol) salt solutions. The pH of 1% EP solutions was between 4.5 and 5.5. Addition of acid increased solution viscosities, whereas addition of base decreased viscosity. EPs from strains CF3, CE51, and H10b displayed qualitatively similar infrared spectra. Calcium and sodium were the most abundant minerals in the three EPs. The amounts of magnesium, calcium, and iron varied considerably among the EPs, but the potassium contents remained relatively constant.  相似文献   
7.
Ruminococcus flavefaciens strain C94, a strictly anaerobic, cellulolytic ruminal bacterial species, was grown either in batch or continuous cultures (cellobiose limited or nitrogen limited) at various dilution rates. Washed cell suspensions were incubated anaerobically at 39°C without nutrients for various times up to 24 h. The effects of starvation on direct and viable cell counts, cell composition (DNA, RNA, protein, and carbohydrate), and endogenous production of volatile fatty acids by the cell suspensions were determined. In addition, the effect of the pH of the starvation buffer on direct and viable cell counts was determined. Survival of batch-grown cells during starvation was variable, with an average time for one-half the cells to lose viability (ST50) of 10.9 h. We found with continuous cultures that viable cell counts declined faster when the initial cell suspensions had been grown at faster dilution rates; this effect was more pronounced for suspensions that had been limited by cellobiose (ST50 = 6.6 h at a dilution rate of 0.33 h−1) than for suspensions that had been limited by nitrogen (ST50 = 9.5 h at a dilution rate of 0.33 h−1). With continuous cultures, viable cell counts in all cases declined faster than direct cell counts did. The rates of disappearance of specific cell components during starvation varied with the initial growth conditions, but could not be correlated with the loss of viability. Volatile fatty acid production by starving cells was very low, and acetate was the main product. Starved cells survived longer at pH 7.0 than they did at pH 5.5, and this effect of pH was greater for cellobiose-limited cells (mean ST50 = 7.1 h) than for nitrogen-limited cells (mean ST50 = 12 h). Although it has relatively low ST50 values, R. flavefaciens has sufficient survival abilities to maintain reasonable numbers in domestic animals having maintenance or greater feed intake.  相似文献   
8.
Bacillus polymyxa can produce levo-butanediol, a potential biogradable anti-freeze, and ethanol, a fuel additive, using starch-based fermentations. To explore use of less expensive biomass fermentation substrates, we screened B. polymyxa strains for good growth on xylans. During aerobic growth on glucose, six selected xylanolytic strains produced mainly acetoin and butanediol plus lesser amounts of acetaldehyde and ethanol. Undesirable acetoin formation was eliminated by anaerobic growth on glucose, but substrate usage, butanediol, and other fermentation products were greatly reduced. High xylanase activity occurred with growth on xylans or corn fiber, and about 50–65% of oatspelt xylan and 25–35% of the corn fiber were used during aerobic growth, but unexpectedly no butanediol and only small levels of acetoin were produced. Aerobic growth on arabinose, arabinose plus glucose, or xylose plus glucose resulted in both acetoin and butanediol formation. Little or no butanediol was made from xylose alone. Growth on an acid hydrolysate of corn fiber that contained a mixture of these sugars resulted in the formation of acetoin, acetaldehyde, and ethanol, but very little butanediol. The data suggest B. polymyxa is limited in conversion of xylan-rich biomass sources or their hydrolysates to butanediol. This limitation might be overcome by using better cultivation conditions and/or genetically engineered strains.  相似文献   
9.
In the last decade, a major goal of research in biofuels has been to metabolically engineer microorganisms to ferment multiple sugars from biomass or agricultural wastes to fuel ethanol. Escherichia coli strains genetically engineered to contain the pet operon (Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase B genes) produce high levels of ethanol. Strains carrying the pet operon in plasmid (e.g., E. coli B/pLOI297) or in chromosomal (e.g., E. coli KO11) sites require antibiotics in the media to maintain genetic stability and high ethanol productivity. To overcome this requirement, we used the conditionally lethal E. coli strain FMJ39, which carries mutations for lactate dehydrogenase and pyruvate formate lyase and grows aerobically but is incapable of anaerobic growth unless these mutations are complemented. E. coli FBR1 and FBR2 were created by transforming E. coli FMJ39 with the pet operon plasmids pLOI295 and pLOI297, respectively. Both strains were capable of anaerobic growth and displayed no apparent pet plasmid losses after 60 generations in serially transferred (nine times) anaerobic batch cultures. In contrast, similar aerobic cultures rapidly lost plasmids. In high-cell-density batch fermentations, 3.8% (wt/vol) ethanol (strain FBR1) and 4.4% (wt/vol) ethanol (strain FBR2) were made from 10% glucose. Anaerobic, glucose-limited continuous cultures of strain FBR2 grown for 20 days (51 generations; 23 with tetracycline and then 28 after tetracycline removal) showed no loss of antibiotic resistance. Anaerobic, serially transferred batch cultures and high-density fermentations were inoculated with cells taken at 57 generations from the previous continuous culture. Both cultures continued to produce high levels of ethanol in the absence of tetracycline. The genetic stability conferred by selective pressure for pet-containing cells without requirement for antibiotics suggests potential commercial suitability for E. coli FBR1 and FBR2.  相似文献   
10.
Rare earth metals play a conspicuous role in magnetic resonance imaging (MRI) for detecting cancerous cells. The alkali metal potassium is a neurotransmitter in the sodium–potassium pump in biomedical sciences. This unique property of rare earth metals and potassium drew our attention to carry forward this study. Therefore, in this work, previously synthesized potassium (K) complexes formed by the reflux of 4-N,N-dimethylaminobenzoic acid (DBA) and potassium hydroxide in methanol, and named [(μ2–4-N,N-dimethylaminobenzoate-κO)(μ2–4-N,N-dimethylaminobenzoic acid-κO)(4-N,N-dimethylaminobenzoic acid-κO) potassium(I) coordination polymer)] were treated hydrothermally with La2O3 nanomaterials to obtain a nanohybrid La2O3/K-complex. After that, the K-complex was analyzed using single-crystal X-ray diffraction and 1H and 13C NMR spectroscopy. In addition, the structural and morphological properties of the as-prepared nanostructured La2O3/K-complex were also characterized, which involved an investigation using X-ray diffraction (XRD)spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force spectroscopy (AFM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) analysis. After this, the electrochemical redox behaviour of the synthesized nanohybrid material was studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Therefore, the results from these studies revealed that the as-prepared material was a La2O3/K-complex that has a promising future role in sensing various analytes, as it showed effective electrocatalytic behaviour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号