首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   18篇
  2021年   4篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   9篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1974年   1篇
  1966年   1篇
排序方式: 共有84条查询结果,搜索用时 171 毫秒
1.
Vegetation History and Archaeobotany - Knowledge about the vegetation history of Sardinia, the second largest island of the Mediterranean, is scanty. Here, we present a new sedimentary record...  相似文献   
2.
The genome of Bacillus licheniformis DSM13 consists of a single chromosome that has a size of 4,222,748 base pairs. The average G+C ratio is 46.2%. 4,286 open reading frames, 72 tRNA genes, 7 rRNA operons and 20 transposase genes were identified. The genome shows a marked co-linearity with Bacillus subtilis but contains defined inserted regions that can be identified at the sequence as well as at the functional level. B. licheniformis DSM13 has a well-conserved secretory system, no polyketide biosynthesis, but is able to form the lipopeptide lichenysin. From the further analysis of the genome sequence, we identified conserved regulatory DNA motives, the occurrence of the glyoxylate bypass and the presence of anaerobic ribonucleotide reductase explaining that B. licheniformis is able to grow on acetate and 2,3-butanediol as well as anaerobically on glucose. Many new genes of potential interest for biotechnological applications were found in B. licheniformis; candidates include proteases, pectate lyases, lipases and various polysaccharide degrading enzymes.  相似文献   
3.
The biosynthetic pathway for the synthesis of the compatible solute alpha-mannosylglycerate (MG) in the thermophilic bacterium Thermus thermophilus HB27 was identified based on the activities of recombinant mannosyl-3-phosphoglycerate synthase (MPGS) (EC 2.4.1.217) and mannosyl-3-phosphoglycerate phosphatase (MPGP) (EC 3.1.3.70). The sequences of homologous genes from the archaeon Pyrococcus horikoshii were used to identify MPGS and MPGP genes in T. thermophilus HB27 genome. Both genes were separately cloned and overexpressed in Escherichia coli, yielding 3 to 4 mg of pure recombinant protein per liter of culture. The molecular masses were 43.6 and 28.1 kDa for MPGS and MPGP, respectively. The recombinant MPGS catalyzed the synthesis of alpha-mannosyl-3-phosphoglycerate (MPG) from GDP-mannose and D-3-phosphoglycerate, while the recombinant MPGP catalyzed the dephosphorylation of MPG to MG. The recombinant MPGS had optimal activity at 80 to 90 degrees C and a pH optimum near 7.0; MPGP had maximal activity between 90 and 95 degrees C and at pH 6.0. The activities of both enzymes were strictly dependent on divalent cations; Mn(2+) was most effective for MPGS, while Mn(2+), Co(2+), Mg(2+), and to a lesser extent Ni(2+) activated MPGP. The organization of MG biosynthetic genes in T. thermophilus HB27 is different from the P. horikoshii operon-like structure, since the genes involved in the conversion of fructose-6-phosphate to GDP-mannose are not found immediately downstream of the contiguous MPGS and MPGP genes. The biosynthesis of MG in the thermophilic bacterium T. thermophilus HB27, proceeding through a phosphorylated intermediate, is similar to the system found in hyperthermophilic archaea.  相似文献   
4.
Metagenomic DNA libraries from three different soil samples (meadow, sugar beet field, cropland) were constructed. The three unamplified libraries comprised approximately 1267000 independent clones and harbored approximately 4.05 Gbp of environmental DNA. Approximately 300000 recombinant Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from short-chain (C2 to C4) polyols such as 1,2-ethanediol, 2,3-butanediol, and a mixture of glycerol and 1,2-propanediol on indicator agar. Twenty-four positive E. COLI clones were obtained during the initial screen. Fifteen of them contained recombinant plasmids, designated pAK201-215, which conferred a stable carbonyl-forming phenotype on E. coli Sequencing revealed that the inserts of pAK201-215 encoded 26 complete and 14 incomplete predicted protein-encoding genes. Most of these genes were similar to genes with unknown functions from other microorganisms or unrelated to any other known gene. The further analysis was focused on the 7 plasmids (pAK204, pAK206, pAK208, and pAK210-213) recovered from the positive clones, which exhibited an NAD(H)-dependent alcohol oxidoreductase activity with polyols or the correlating carbonyls as substrates in crude extracts. Three genes (ORF6, ORF24, and ORF25) conferring this activity were identified during subcloning of the inserts of pAK204, pAK211, and pAK212. The sequences of the three deduced gene products revealed no significant similarities to known alcohol oxidoreductases, but contained putative glycine-rich regions, which are characteristic for binding of nicotinamide cofactors.  相似文献   
5.
Considering the dynamic nature of CYPs, methods that reveal information about substrate and enzyme dynamics are necessary to generate predictive models. To compare substrate dynamics in CYP2E1 and CYP2A6, intramolecular isotope effect experiments were conducted, using deuterium labeled substrates: o-xylene, m-xylene, p-xylene, 2,6-dimethylnaphthalene, and 4,4'-dimethylbiphenyl. Competitive intermolecular experiments were also conducted using d(0)- and d(6)-labeled p-xylene. Both CYP2E1 and CYP2A6 displayed full isotope effect expression for o-xylene oxidation and almost complete suppression for dimethylbiphenyl. Interestingly, (k(H)/k(D))(obs) for d(3)-p-xylene oxidation ((k(H)/k(D))(obs)=6.04 and (k(H)/k(D))(obs)=5.53 for CYP2E1 and CYP2A6, respectively) was only slightly higher than (k(H)/k(D))(obs) for d(3)-dimethylnaphthalene ((k(H)/k(D))(obs)=5.50 and (k(H)/k(D))(obs)=4.96, respectively). One explanation is that in some instances (k(H)/k(D))(obs) values are generated by the presence of two substrates-bound simultaneously to the CYP. Speculatively, if this explanation is valid, then intramolecular isotope effect experiments should be useful in the mechanistic investigation of P450 cooperativity.  相似文献   
6.
Sulfurtransferases/rhodaneses (Str) comprise a group of enzymes widely distributed in all phyla which catalyze in vitro the transfer of a sulfur atom from suitable sulfur donors to nucleophilic sulfur acceptors. The best characterized Str is bovine rhodanese (EC 2.8.1.1) which catalyses in vitro the transfer of a sulfane sulfur atom from thiosulfate to cyanide, leading to the formation of sulfite and thiocyanate. Plants as well as other organisms contain many proteins carrying a typical rhodanese pattern or domain forming multi-protein families (MPF). Despite the presence of Str activities in many living organisms, the physiological role of the members of this MPF has not been established unambiguously. While in mammals these proteins are involved in the elimination of toxic cyanogenic compounds, their ubiquity suggests additional physiological functions. In plants, Str are localized in the cytoplasm, mitochondria, plastids, and nucleus. Str probably also transfer reduced sulfur onto substrates as large as peptides or proteins. Several studies in different organisms demonstrate a protein–protein interaction with members of the thioredoxin MPF indicating a role of Str in maintenance of the cellular redox homeostasis. The increased expression of several members of the Str MPF in various stress conditions could be a response to oxidative stress. In summary, data indicate that Str are involved in various essential metabolic reactions.  相似文献   
7.
We have studied the transport of trehalose and maltose in the thernophilic bacterium Thermus thermophilus HB27, which grows optimally in the range of 70 to 75 degrees C. The K(m) values at 70 degrees C were 109 nM for trehalose and 114 nM for maltose; also, a high K(m) (424 nM) was found for the uptake of sucrose. Competition studies showed that a single transporter recognizes trehalose, maltose, and sucrose, while d-galactose, d-fucose, l-rhamnose, l-arabinose, and d-mannose were not competitive inhibitors. In the recently published genome of T. thermophilus HB27, two gene clusters designated malEFG1 (TTC1627 to -1629) and malEFG2 (TTC1288 to -1286) and two monocistronic genes designated malK1 (TTC0211) and malK2 (TTC0611) are annotated as trehalose/maltose and maltose/maltodextrin transport systems, respectively. To find out whether any of these systems is responsible for the transport of trehalose, the malE1 and malE2 genes, lacking the sequence encoding the signal peptides, were expressed in Escherichia coli. The binding activity of pure recombinant proteins was analyzed by equilibrium dialysis. MalE1 was able to bind maltose, trehalose, and sucrose but not glucose or maltotetraose (K(d) values of 103, 67, and 401 nM, respectively). Mutants with disruptions in either malF1 or malK1 were unable to grow on maltose, trehalose, sucrose, or palatinose, whereas mutants with disruption in malK2 or malF2 showed no growth defect on any of these sugars. Therefore, malEFG1 encodes the binding protein and the two transmembrane subunits of the trehalose/maltose/sucrose/palatinose ABC transporter, and malK1 encodes the ATP-binding subunit of this transporter. Despite the presence of an efficient transporter for trehalose, this compound was not used by HB27 for osmoprotection. MalE1 and MalE2 exhibited extremely high thermal stability: melting temperatures of 90 degrees C for MalE1 and 105 degrees C for MalE2 in the presence of 2.3 M guanidinium chloride. The latter protein did not bind any of the sugars examined and is not implicated in a maltose/maltodextrin transport system. This work demonstrates that malEFG1 and malK1 constitute the high-affinity ABC transport system of T. thermophilus HB27 for trehalose, maltose, sucrose, and palatinose.  相似文献   
8.
9.
The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining (“live/dead staining” indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotpes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.  相似文献   
10.
The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号