首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   5篇
  国内免费   1篇
  2021年   3篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   9篇
  2013年   3篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
  2009年   3篇
  2008年   8篇
  2007年   4篇
  2006年   2篇
  2005年   6篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1987年   3篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1966年   1篇
  1959年   1篇
  1958年   2篇
  1949年   1篇
  1944年   1篇
  1934年   1篇
  1926年   1篇
排序方式: 共有129条查询结果,搜索用时 19 毫秒
1.
The structure of tetra-O-methyl- (+) -catechin has been determined in the crystalline state. Two independent molecules, denoted structure A and structure B, exist in the unit cell. Crystals are triclinic, space group P1, a = 4.8125(2) Å, b = 12.9148(8) Å, c = 13.8862(11) Å, α = 86.962(6) °, β = 89.120(5)°, γ = 88.044(5)°, Z = 2, Dc = 1.336 g cm?3, R = 0.033 for 6830 observations. The heterocyclic rings of the crystal structures are compared to previous results for 8-bromotetra-O-methyl-(+)-catechin, penta-O-acetyl-(+)-catechin, and (?) -epicatechin. One of the two molecules has a heterocyclic ring conformation similar to that observed previously for (?)-epicatechin, and the other has a heterocyclic ring conformation similar to one predicted earlier in a theoretical analysis of dimers of (+)-catechin and (?) -epicatechin. Both structure A and structure B in the crystal have heterocyclic ring conformations that place the dimethoxyphenyl substituent at C(2) in the equatorial position. However, this heterocyclic ring conformation does not explain the proton nmr coupling constant measured in solution. Molecular dynamics simulations show an equatorial ? axial interconversion of the heterocyclic ring, which can explain the nmr results. © 1993 John Wiley & Sons, Inc.  相似文献   
2.
Alzheimer''s disease (AD) is an age-related condition characterized by accumulation of neurotoxic amyloid β peptides (Aβ) in brain and retina. Because bone marrow transplantation (BMT) results in decreased cerebral Aβ in experimental AD, we hypothesized that BMT would mitigate retinal neurotoxicity through decreased retinal Aβ. To test this, we performed BMT in APPswe/PS1ΔE9 double transgenic mice using green fluorescent protein expressing wild type (wt) mice as marrow donors. We first examined retinas from control, non-transplanted, aged AD mice and found a two-fold increase in microglia compared with wt mice, prominent inner retinal Aβ and paired helical filament-tau, and decreased retinal ganglion cell layer neurons. BMT resulted in near complete replacement of host retinal microglia with BMT-derived cells and normalized total AD retinal microglia to non-transplanted wt levels. Aβ and paired helical filament-tau were reduced (61.0% and 44.1% respectively) in BMT-recipient AD mice, which had 20.8% more retinal ganglion cell layer neurons than non-transplanted AD controls. Interestingly, aged wt BMT recipients also had significantly more neurons (25.4%) compared with non-transplanted aged wt controls. Quantitation of retinal ganglion cell layer neurons in young mice confirmed age-related retinal degeneration was mitigated by BMT. We found increased MHC class II expression in BMT-derived microglia and decreased oxidative damage in retinal ganglion cell layer neurons. Thus, BMT is neuroprotective in age-related as well as AD-related retinal degeneration, and may be a result of alterations in innate immune function and oxidative stress in BMT recipient mice.  相似文献   
3.
Chytridiomycosis is a fatal disease of amphibians, caused by the amphibian chytrid Batrachochytrium dendrobatidis. The disease is unusual in that it may drive many amphibian species to local extinction during outbreaks. These dramatic declines in host population numbers could be facilitated if the pathogen can grow as a saprobe or on alternative hosts, a feature common to other chytrid species. This is also supported by in vitro work that demonstrates B. dendrobatidis can grow and reproduce in the absence of amphibian cells. In a previous study, B. dendrobatidis was detected on freshwater shrimp from rain forest streams in northern Queensland, Australia, using diagnostic PCR. We set out to confirm and further investigate the presence of B. dendrobatidis on crustaceans by carrying out more extensive sampling of shrimp in the field, experimental B. dendrobatidis infection trials using shrimp and crayfish, and PCR verification of the presence of B. dendrobatidis from shrimp samples that previously tested positive. We could not confirm the presence of B. dendrobatidis on shrimp, and report that original positive tests in shrimp reported by Rowley et al. (2006) were likely false. Thus, we suggest that shrimp may not be an important reservoir host for B. dendrobatidis.  相似文献   
4.
INTRODUCTION: Changes in liver blood flow caused by an unknown splanchnic vasoconstrictor have been noted in colorectal cancer patients with liver metastases. This prospective study was performed to assess whether plasma levels of big endothelin-1 (big ET-1) were raised in patients with colorectal cancer. METHODS: Plasma samples from peripheral vein of patients who underwent surgery for primary colorectal cancer (n=60) and those with known colorectal liver metastases (n=45) for a period of 15 months were taken prior to treatment and compared to age- and sex-matched controls (n=20). Plasma samples were analysed by using a single-step sandwich enzyme immunoassay. Immunohistochemistry and in situ hybridisation were also performed on tumour sections to investigate the expression of ET-1 by cancer cells. RESULTS: The median (range) plasma concentration of big ET-1 in controls was 2.1 pg/mL (1.2-13.4 pg/mL). The median (range) plasma concentration of big ET-1 in colorectal cancer patients with no overt hepatic metastases was 3.8 pg/mL (1.2-15.8 pg/mL), p=0.002, and the median (range) plasma concentration of big ET-1 in colorectal cancer patients with hepatic metastases was 5.2 pg/mL (1.7-30 pg/mL), p=0.0001; both were significantly elevated compared to the control group. A significant difference in immunostaining for big ET-1 was noted between paired normal colonic mucosa (median score-1) and tumour sections (median score-3), p=0.01. CONCLUSION: This study has demonstrated elevated concentrations of big ET-1 in colorectal cancer patients, especially in those with hepatic metastases. Upregulation of ET activity in colorectal cancer could be inferred by the increased immunostaining of big ET-1 in cancer cells. Therefore, plasma big ET-1 levels should be evaluated as a potential tumour marker for the identification of hepatic metastases at an earlier stage.  相似文献   
5.
Samples of the dengue vector mosquito Aedes aegypti (L.) (Diptera: Culicidae) were collected from 13 localities between 1995 and 1998. Two laboratory strains, Bora (French Polynesia) and AEAE, were both susceptible to DDT and permethrin; all other strains, except Larentuka (Indonesia) and Bouaké (Ivory Coast), contained individual fourth-instar larvae resistant to permethrin. Ten strains were subjected to a range of biochemical assays. Many strains had elevated carboxylesterase activity compared to the Bora strain; this was particularly high in the Indonesian strains Salatiga and Semarang, and in the Guyane strain (Cayenne). Monooxygenase levels were increased in the Salatiga and Paea (Polynesia) strains, and reduced in the two Thai strains (Mae Kaza, Mae Kud) and the Larentuka strain. Glutathione S-transferase activity was elevated in the Guyane strain. All other enzyme profiles were similar to the susceptible strain. The presence of both DDT and pyrethroid resistance in the Semarang, Belem (Brazil) and Long Hoa (Vietnam) strains suggested the presence of a knock-down resistant (kdr)-type resistance mechanism. Part of the S6 hydrophobic segment of domain II of the voltage-gated sodium channel gene was obtained by RT-PCR and sequenced from several insects from all 13 field strains. Four novel mutations were identified. Three strains contained identical amino acid substitutions at two positions, two strains shared a different substitution, and one strain was homozygous for a fourth alteration. The leucine to phenylalanine substitution that confers nerve insensitivity to pyrethroids in a range of other resistant insects was absent. Direct neurophysiological assays on individual larvae from three strains with these mutations demonstrated reduced nerve sensitivity to permethrin or lambda cyhalothrin inhibition compared to the susceptible strains.  相似文献   
6.
The mosquito Anopheles stephensi Liston (Diptera: Culicidae) is the urban vector of malaria in several countries of the Middle East and Indian subcontinent. Extensive use of residual insecticide spraying for malaria vector control has selected An. stephensi resistance to DDT, dieldrin, malathion and other organophosphates throughout much of its range and to pyrethroids in the Middle East. Metabolic resistance mechanisms and insensitivity to pyrethroids, so-called knockdown resistance (kdr), have previously been reported in An. stephensi. Here we provide molecular data supporting the hypothesis that a kdr-like pyrethroid-resistance mechanism is present in An. stephensi. We found that larvae of a pyrethroid-selected strain from Dubai (DUB-R) were 182-fold resistant to permethin, compared with a standard susceptible strain of An. stephensi. Activities of some enzymes likely to confer pyrethroid-resistance (i.e. esterases, monooxygenases and glutathione S-transferases) were significantly higher in the permethrin-resistant than in the susceptible strain, but the use of synergists--piperonyl butoxide (PBO) to inhibit monooxygenases and/or tribufos (DEF) to inhibit esterases--did not fully prevent resistance in larvae (permethrin LC50 reduced by only 51-68%), indicating the involvement of another mechanism. From both strains of An. stephensi, we obtained a 237-bp fragment of genomic DNA encoding segment 6 of domain II of the para type voltage-gated sodium channel, i.e. the putative kdr locus. By sequencing this 237 bp fragment, we identified one point mutation difference involving a single A-T base change encoding a leucine to phenylalanine amino acid substitution in the pyrethroid-resistant strain. This mutation appears to be homologous with those detected in An. gambiae and other insects with kdr-like resistance. A diagnostic polymerase chain reaction assay using nested primers was therefore designed to detect this mechanism in An. stephensi.  相似文献   
7.
The primary routes of insecticide resistance in all insects are alterations in the insecticide target sites or changes in the rate at which the insecticide is detoxified. Three enzyme systems, glutathione S-transferases, esterases and monooxygenases, are involved in the detoxification of the four major insecticide classes. These enzymes act by rapidly metabolizing the insecticide to non-toxic products, or by rapidly binding and very slowly turning over the insecticide (sequestration). In Culex mosquitoes, the most common organophosphate insecticide resistance mechanism is caused by co-amplification of two esterases. The amplified esterases are differentially regulated, with three times more Est beta 2(1) being produced than Est alpha 2(1). Cis-acting regulatory sequences associated with these esterases are under investigation. All the amplified esterases in different Culex species act through sequestration. The rates at which they bind with insecticides are more rapid than those for their non-amplified counterparts in the insecticide-susceptible insects. In contrast, esterase-based organophosphate resistance in Anopheles is invariably based on changes in substrate specificities and increased turnover rates of a small subset of insecticides. The up-regulation of both glutathione S-transferases and monooxygenases in resistant mosquitoes is due to the effects of a single major gene in each case. The products of these major genes up-regulate a broad range of enzymes. The diversity of glutathione S-transferases produced by Anopheles mosquitoes is increased by the splicing of different 5' ends of genes, with a single 3' end, within one class of this enzyme family. The trans-acting regulatory factors responsible for the up-regulation of both the monooxygenase and glutathione S-transferases still need to be identified, but the recent development of molecular tools for positional cloning in Anopheles gambiae now makes this possible.  相似文献   
8.
We have constructed a genetic map of the major African malaria vector, Anopheles funestus, using genetic markers segregating in F(2) progeny from crosses between two strains colonized from different field sites. Genotyping was performed on 174 progeny from three families using 33 microsatellite markers, a single RFLP, and 15 single nucleotide polymorphism (SNP) loci. Four linkage groups were resolved and these were anchored to chromosomes X and 2 and chromosomal arms 3R and 3L by comparison with a physical map of this species. Five markers were linked to the X chromosome, 16 markers to chromosome 2, and 10 and 11 markers to chromosomal arms 3R and 3L, respectively. This significantly increases the number of chromosomally defined genetic markers for this species and will facilitate the identification of genes controlling epidemiologically important traits such as resistance to insecticides or vector competence.  相似文献   
9.
Pyrethroid resistance has been demonstrated in populations of Anopheles funestus from South Africa and southern Mozambique. Resistance is associated with elevated P450 monooxygenase enzymes. In this study, degenerate primers based on conserved regions of Anopheles gambiae P450 CYP4, 6 and 9 families were used to amplify genomic and cDNA templates from A. funestus. A total of 12 CYP4, 12 CYP6 and 7 CYP9 partial genes have been isolated and sequenced. BLAST results revealed that A. funestus P450s generally have a high sequence identity to A. gambiae with above 75% identity at the amino acid level. The exception is CYP9J14. The A. gambiae P450 showing highest identity to CYP9J14 exhibits only 55% identity suggesting that CYP9J14 may have arisen from a recent duplication event. Molecular phylogenetic analysis based on amino acid sequences also supported this hypothesis. Intron positions, but not size, were highly conserved between the two species. The high level of orthology that exists in the P450 gene families of these two species may facilitate the prediction of individual P450 protein function.  相似文献   
10.
The mosquito Aedes aegypti is the principal vector of dengue and yellow fever flaviviruses. Permethrin is an insecticide used to suppress Ae. aegypti adult populations but metabolic and target site resistance to pyrethroids has evolved in many locations worldwide. Quantitative trait loci (QTL) controlling permethrin survival in Ae. aegypti were mapped in an F3 advanced intercross line. Parents came from a collection of mosquitoes from Isla Mujeres, México, that had been selected for permethrin resistance for two generations and a reference permethrin-susceptible strain originally from New Orleans. Following a 1-hr permethrin exposure, 439 F3 adult mosquitoes were phenotyped as knockdown resistant, knocked down/recovered, or dead. For QTL mapping, single nucleotide polymorphisms (SNPs) were identified at 22 loci with potential antixenobiotic activity including genes encoding cytochrome P450s (CYP), esterases (EST), or glutathione transferases (GST) and at 12 previously mapped loci. Seven antixenobiotic genes mapped to chromosome I, six to chromosome II, and nine to chromosome III. Two QTL of major effect were detected on chromosome III. One corresponds with a SNP previously associated with permethrin resistance in the para sodium channel gene and the second with the CCEunk7o esterase marker. Additional QTL but of relatively minor effect were also found. These included two sex-linked QTL on chromosome I affecting knockdown and recovery and a QTL affecting survival and recovery. On chromosome II, one QTL affecting survival and a second affecting recovery were detected. The patterns confirm that mutations in the para gene cause target-site insensitivity and are the major source of permethrin resistance but that other genes dispersed throughout the genome contribute to recovery and survival of mosquitoes following permethrin exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号