首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
  2023年   1篇
  2020年   1篇
  2018年   3篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
More than 20% of irrigated land has been influenced by salt stress, decreasing crop production. In this research, we investigated the effect of different levels of salinity (0, 50, 100 and 150 mM NaCl) and the efficiency of Piriformospora indica on growth, biochemical traits, antioxidative defense system in tomato (Solanum lycopersicum L.). NaCl stress reduced chlorophyll content, height and biomass of plants. Higher level of salinity (150 mM) declined the plant height by 22.65%, total dry weight by 56.44% and total chlorophyll by 44.34%, however, P. indica inoculation raised plant height by 43.47%, dry weight by 69.23% and total chlorophyll content by 48.09%. Salinity stress increased H2O2, malondialdehyde (MDA), superoxide anion and 1,1-diphenyl-2-picrylhydrazyl (DPPH) level in leaves and roots tomato seedlings. However, P. indica inoculation reduced H2O2, MDA and superoxide anion and enhanced DPPH compared to non-inoculated plants at all NaCl levels. The total phenol and flavonoids increased with NaCl treatment. On the other hand, the total phenolic and flavonoid increased more in P. indica inoculated plants compared to non-inoculated ones. Moreover, inoculation of P. indica implicated noteworthy improvement of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and glutathione reductase (GR) activity in tomato upon salinity. Notably, colonization with P. indica significantly improved the content of reduced ascorbic acid (AsA), glutathione (GSH) and redox ratio in the tomato plants under salinity resulting in reduced redox state. Our findings confirmed that salinity had negative effect on tomato seedling; however, P. indica inoculation increased tolerance to salinity by improving the content of phenolic compounds, non-enzymatic antioxidants, and increasing the activity of antioxidant enzymes.  相似文献   
2.
The purposes of this study were to evaluate the phosphate solubilization activity of bacteria isolated from the rhizosphere of rice paddy soil in northern Iran, and to study the effect of temperature, NaCl and pH on the growth of these isolates by modeling. Three of the most effective strains from a total of 300 isolates were identified and a phylogenetic analysis was carried out by 16S rDNA sequencing. The isolates were identified as Pantoea ananatis (M36), Rahnella aquatilis (M100) and Enterobacter sp. (M183). These isolates showed multiple plant growth-promoting attributes such as phosphate solubilization activity and indole-3-acetic acid (IAA) production. The M36, M100 and M183 isolates were able to solubilize 172, 263 and 254 µg ml?1 of Ca3(PO4)2 after 5 days of growth at 28 °C and pH 7.5, and to produce 8.0, 2.0 and 3.0 μg ml?1 of IAA when supplemented with l-tryptophan (1 mg ml?1) for 72 h, at 28 °C and pH 7.0, respectively. The solubilization of insoluble phosphate was associated with a drop in the pH of the culture medium and there was an inverse relationship between pH and solubilized P (r = ?0.98, P < 0.0952). There were no significant differences among isolates in terms of acidity tolerance based on their confidence limits as assessed by segmented model analysis and all isolates were able to grow at pH 4.3–11 (with optimum at 7.0–7.5). Based on a sigmoidal trend of a three-parameter logistic model, the salt concentration required for 50 % inhibition was 8.15, 6.30 and 8.23 % NaCl for M36, M100 and M183 isolates, respectively. Moreover, the minimum and maximum growth temperatures estimated by the segmented model were 5.0 and 42.75 °C for M36, 12.76 and 40.32 °C for M100, and 10.63 and 43.66 °C for M183. The three selected isolates could be deployed as inoculants to promote plant growth in an agricultural environment.  相似文献   
3.
The present study was intended to isolate potassium-solubilizing bacteria (KSB) from paddy rhizosphere soil. The isolates were obtained from 40 rice paddy fields across Mazandaran province in northern Iran and screened for their K-solubilizing ability on modified Aleksandrov agar medium. The three selected isolates which showed the best solubilisation of potassium were identified using molecular marker 16S rDNA sequencing. The isolates were identified as Pantoea agglomerans, Rahnella aquatilis and Pseudomonas orientalis. From the flame photometry results, the amounts of potassium released by the isolates from mica at 21st day of incubation were 35.36, 76.04 and 56.58 μg ml?1, respectively. The estimated optimal growth temperature (Ts) were 26.38, 29.17 and 26.80 °C based on segmented model analysis. The pH values of the culture medium with ranges from 6.75–7.26, had a more positive effect on the solubilization of potassium-bearing minerals. The pot experiment results showed that the inoculums of all three KSB enhanced the amount of grain yield and K uptake compared to the control treatment (without K fertilizer). Values were higher when KSB inoculums were used with ½ K chemical fertilizer (47.5 Kg/ha). Bacterial inoculums also increased K use efficiency (AE, PE, APE, ARE and UE) in plants. In conclusion, these findings have successfully demonstrated the effectiveness of locally isolated PGPR with multiple beneficial characteristics such as K solubilizing, IAA production and tolerance to different environment stresses. Therefore, they can be used as biofertilizers to enhance the availability of potassium in the soils and to improve the growth and yield of rice.  相似文献   
4.
The cadmium (Cd), being a widespread soils pollutant and one of the most toxic heavy metals in the environment, adversely affects sustainable crop production and food safety. Pot experiment was conducted to quantify and simulate the response of purslane (Portulaca oleracea L.) plants to Cd toxicity. The purslane germinated seeds were cultivated in twelve Cd concentrations (from 0 to 300 mg/kg of Cd in soil) for six weeks and then some growth characteristics, photosynthesis pigments, and chlorophyll a fluorescence parameters were measured. The influence of Cd gradients in the soil on all growth parameters, photosynthesis pigments and chlorophyll a fluorescence parameters (except Fm and carotenoid content) were described by a segmented model. Furthermore, Fm and carotenoid contents were fitted to a linear model. The growth characteristics, chlorophyll content, photosynthetic pigments and some parameters of chlorophyll a fluorescence such as Fv, Fv/Fm, Y(II) and ETR decreased when Cd concentration increased. In contrast, F0, Y(NPQ) and Y(NO) increased and Fm was not significantly affected. In general, most variations in the studied parameters were recorded with low concentrations of cadmium, which ranged from 0 to 125 mg/kg. Also, the growth characteristics (especially stem, leaf, and shoot dry weights) were more sensitive to Cd contamination than other parameters. Moreover, among chlorophyll fluorescence parameters, Y(NPQ) was the most sensitive to Cd concentration gradients in the soil that can be due to disturbances of antennae complex of PSII.  相似文献   
5.
6.
In the present study, the impact of potassium phosphite on response of cucumber plants inoculated with Pythium ultimum var. ultimum was assessed. Variations in the accumulation of both antioxidant enzymes and growth parameters were investigated. The results revealed that fresh and dry weights of shoot and root exhibited up to 2 fold increase in potassium phosphite-treated plants. The concentrations of peroxidase, superoxide dismutase and catalase were significantly higher in the plants treated with 4 g L?1 of potassium phosphite compared to other treatments, at 48 h after inoculation. It was demonstrated that both 2 and 4 g L?1 treatments could alleviate the disease damage to a high extent, while control plants were severely damaged by the pathogen. The results of this study suggest that the increased induction of antioxidant enzymes (2.2, 2.8 and 4 fold increase for superoxide dismutase, catalase and peroxidase, respectively) might have alleviated damping-off symptoms leading to increased plant growth and yield.  相似文献   
7.

Eruca (Eruca sativa; Brassicaceae) is an important industrial crop due to its ability to grow under a wide range of climatic conditions and in poor fertility lands and also for the quality of seed oil and protein. Seed germination (SG) is an important event in plant’s life history which can significantly be influenced by several environmental factors such as temperature (T), water potential (ψ), salinity, pH, and burial depth. Therefore, this study aimed (i) to investigate the effects of these environmental factors on SG behavior of Eruca using several mathematical models, (ii) to determine the cardinal Ts and tolerance threshold value for each trait (i.e., 50% reduction than its maximum value) affected by the environmental factor, and (iii) to quantify the response of Eruca seedling growth to each environmental factor. The results indicated that Eruca SG and seedling growth were significantly influenced by these factors (P < 0.05). The estimated cardinal Ts were 1 °C for the base T, 30 °C for the optimum T, and 40.8 °C for the ceiling T. The salt and drought tolerance threshold values were 257 mM NaCl and − 1.2 MPa for SG and 247 mM NaCl and − 1 MPa for the seedling growth, respectively, suggesting that the seedling growth was more sensitive than SG under both salt and drought stresses in Eruca. In addition, the maximum SG and seedling growth were observed at pH 7 and burial depth 1.9 cm. In general, the models used in this study could describe well the response of Eruca SG under different levels of environmental factors and also their parameters could easily be used in Eruca SG simulation models. This information also could help us to better manage the production of this plant under stressful conditions and/or to determine its geographic range expansion in the world.

  相似文献   
8.
This study evaluated the ability of a hydrothermal time model (HTT) to describe the kinetics of watermelon (Citrullus vulgaris cv. ‘Crimson sweet’) seed germination under different temperatures (T) and water potentials (ψ) and also to determine the cardinal temperatures of watermelon. Results indicated that ψ influenced germination rate and germination percentage. For this seed lot, cardinal temperatures were 10 °C for T b, 28.34 °C for T o and 40.8 °C for T c in the control (0 MPa) treatment. There was a decrease in hydrotime constant (θ H) when T was increased to T o and then remained constant at supra-optimal temperatures (30 MPah?1). Also, at temperatures above T o, ψ b(50) values increased linearly with T. The k T value (the slope of the relationship between ψ b(50) and T exceeds T o) of this seed lot was calculated as 0.076 MPa°Ch?1. Results this study show that when the HTT model is applied, it can accurately describe ψ b(g) and the course of germination around Ts (R 2 = 0.82). Moreover, the ψ b(50) was estimated to be ?0.96 MPa based on this model. Consequently, the germination response of watermelon for all Ts and ψs can be adequately described by the HTT model and enabling it to be used as a predictive tool in watermelon seed germination simulation models.  相似文献   
9.
  • Salinity is now an increasingly serious environmental issue that affects the growth and yield of many plants.
  • In the present work, the influence of inoculation with the symbiotic fungus, Piriformospora indica, on gas exchange, water potential, osmolyte content, Na/K ratio and chlorophyll fluorescence of tomato plants under three salinity levels (0, 50, 100 and 150 mm NaCl) and three time periods (5, 10 and 15 days after exposure to salt) was investigated.
  • Results indicate that P. indica inoculation improved growth parameters of tomato under salinity stress. This symbiotic fungus significantly increased photosynthetic pigment content under salinity, and more proline and glycine betaine accumulated in inoculated roots than in non‐inoculated roots. P. indica further significantly improved K+ content and reduced Na+ level under salinity treatment. After inoculation with the endophytic fungus, leaf physiological parameters, such as water potential, net photosynthesis, stomatal conductance and transpiration, were all higher under the salt concentrations and durations compared with controls without P. indica. With increasing salt level and salt treatment duration, values of F0 and qP increased but Fm, Fv/Fm, F′v/F′m and NPQ declined in the controls, while inoculation with P. indica improved these values.
  • The results indicate that the negative effects of NaCl on tomato plants were alleviated after P. indica inoculation, probably by improving physiological parameters such as water status and photosynthesis.
  相似文献   
10.
Saline stress is responsible for significant reductions in the growth of plants, and it globally leads to limitations in the performance of crops, especially in drought-affected areas. However, a better understanding of the mechanisms involved in the resistance of plants to environmental stress can lead to a better plant breeding and selection of cultivars. Mint is one of the most important medicinal plants, and it has important properties for industry, and for the medicinal and pharmacy fields. The effects of salinity on the biochemical and enzymatic properties of 18 ecotypes of mint from six different species, that is, Mentha piperita, Mentha mozafariani, Mentha rotundifolia, Mentha spicata, Mentha pulegium and Mentha longifolia, have been examined in this study. The experimental results showed that salinity increased with increasing in stress integrity influenced the enzymatic properties, proline content, electrolyte leakage, and the hydrogen peroxide, malondialdehyde, and essential oil contents. Cluster analysis and principal component analysis were conducted, and they grouped the studied species on the basis of their biochemical characteristics. According to the obtained biplot results, M. piperita and M. rotundifolia showed better stress tolerance than the other varieties, and M. longifolia was identified as being salt sensitive. Generally, the results showed that H2O2 and malondialdehyde had a positive connection with each other and showed a reverse relationship with all the enzymatic and non-enzymatic antioxidants. Finally, it was found that the M. spicata, M. rotundifolia and M. piperita ecotypes could be used for future breeding projects to improve the salinity tolerance of other ecotypes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号