首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   4篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   5篇
  2011年   5篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2003年   2篇
  2002年   3篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1991年   2篇
  1983年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有44条查询结果,搜索用时 869 毫秒
1.

Background  

Micro-biological research relies on the use of model organisms that act as representatives of their species or subspecies, these are frequently well-characterized laboratory strains. However, it has often become apparent that the model strain initially chosen does not represent important features of the species. For micro-organisms, the diversity of their genomes is such that even the best possible choice of initial strain for sequencing may not assure that the genome obtained adequately represents the species. To acquire information about a species' genome as efficiently as possible, we require a method to choose strains for analysis on the basis of how well they represent the species.  相似文献   
2.
Different values have resulted in conflicts between anglers and conservation lobbies in the management of trout in South Africa. Key to the conflict is the demarcation of boundaries to areas in which brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss currently occur, or are likely to establish following stocking for angling. To provide a longer-term perspective on these areas, we developed models to link salmonid biological thermal thresholds to elevation. These, when applied spatially using a digital elevation model with a probability of occurrence model, provided the basis for estimating potentially available thermal habitat for these two cold water species. Here, we acknowledge that other variables (stocking history; river connectivity) also play a role in understanding trout distributions. Using a simple scenario of an increase in mean daily water temperatures of 2 °C, we demonstrated that both brown and rainbow trout are likely to exhibit considerable range reductions in the future. Because it is possible that these range restrictions will result in an increasing desire to introduce trout into areas above their current distribution limits for the maintenance of angling opportunities, conservation managers should prioritise these areas, with management interventions seeking to understand what will help to limit introductions.  相似文献   
3.

Background

Current techniques used to obtain lung samples have significant limitations and do not provide reproducible biomarkers of inflammation. We have developed a novel technique that allows multiple sampling methods from the same area (or multiple areas) of the lung under direct bronchoscopic vision. It allows collection of mucosal lining fluid and bronchial brushing from the same site; biopsy samples may also be taken. The novel technique takes the same time as standard procedures and can be conducted safely.

Methods

Eight healthy smokers aged 40–65 years were included in this study. An absorptive filter paper was applied to the bronchial mucosa under direct vision using standard bronchoscopic techniques. Further samples were obtained from the same site using bronchial brushings. Bronchoalveolar lavage (BAL) was obtained using standard techniques. Chemokine (C-C Motif) Ligand 20 (CCL20), CCL4, CCL5, Chemokine (C-X-C Motif) Ligand 1 (CXCL1), CXCL8, CXCL9, CXCL10, CXCL11, Interleukin 1 beta (IL-1β), IL-6, Vascular endothelial growth factor (VEGF), Matrix metalloproteinase 8 (MMP-8) and MMP-9 were measured in exudate and BAL. mRNA was collected from the bronchial brushings for gene expression analysis.

Results

A greater than 10 fold concentration of all the biomarkers was detected in lung exudate in comparison to BAL. High yield of good quality RNA with RNA integrity numbers (RIN) between 7.6 and 9.3 were extracted from the bronchial brushings. The subset of genes measured were reproducible across the samples and corresponded to the inflammatory markers measured in exudate and BAL.

Conclusions

The bronchoabsorption technique as described offers the ability to sample lung fluid direct from the site of interest without the dilution effects caused by BAL. Using this method we were able to successfully measure the concentrations of biomarkers present in the lungs as well as collect high yield mRNA samples for gene expression analysis from the same site. This technique demonstrates superior sensitivity to standard BAL for the measurement of biomarkers of inflammation. It could replace BAL as the method of choice for these measurements. This method provides a systems biology approach to studying the inflammatory markers of respiratory disease progression.

Trial registration

NHS Health Research Authority (13/LO/0256).  相似文献   
4.
Topography should create spatial variation in water and nutrients and play an especially important role in the ecology of water-limited systems. We use stable isotopes to discern how plants respond both to ecological gradients associated with elevation and to neighboring legumes on a south-facing slope in the semi-arid, historically grazed steppe of northern Mongolia. Out of three target species, Potentilla acaulis, Potentilla sericea, and Festuca lenensis, when >30 cm from a legume, all showed a decrease in leaf δ15N with increasing elevation. This, together with measures of soil δ15N, suggests greater N processing at the moister, more productive, lower elevation, and more N fixation at the upper elevation, where cover of legumes and lichens and plant-available nitrate were greater. Total soil N was greater at the lower elevation, but not lichen biomass or root colonization by AMF. Leaf δ13C values for P. acaulis and F. lenensis are consistent with increasing water stress with elevation; δ13C values indicated the greatest intrinsic water use efficiency for P. sericea, which is more abundant at the upper elevation. Nearby legumes (<10 cm) moderate the effect of elevation on leaf δ15N, confirming legumes’ meaningful input of N, and affect leaf δ13C for two species, suggesting an influence on the efficiency of carbon fixation. Variation in leaf %N and %C as a function of elevation and proximity to a legume differs among species. Apparently, most N input is at upper elevations, pointing to the possible importance of grazers, in addition to hydrological processes, as transporters of N throughout this landscape.  相似文献   
5.
1. Aquatic ecosystems in Northern Europe are expected to face increases in temperature and water colour (TB) in future. While effects of these factors have been studied separately, it is unknown whether and how a combination of them might affect phenological events and trophic interactions. 2. In a mesocosm study, we combined both factors to create conditions expected to arise during the coming century. We focused on quantifying effects on timing and magnitude of plankton spring phenological events and identifying possible mismatches between resources (phytoplankton) and consumers (zooplankton). 3. We found that the increases in TB had important effects on timing and abundance of different plankton groups. While increased temperature led to an earlier peak in phytoplankton and zooplankton and a change in the relative timing of different zooplankton groups, increased water colour reduced chlorophyll‐a concentrations. 4. Increased TB together benefitted cladocerans and calanoid copepods and led to stronger top‐down control of algae by zooplankton. There was no sign of a mismatch between primary producers and grazers as reported from other studies. 5. Our results point towards an earlier onset of plankton spring growth in shallow lakes in future with a stronger top‐down control of phytoplankton by zooplankton grazers.  相似文献   
6.
1. Environmental changes such as eutrophication and increasing inputs of humic matter (brownification) may have strong effects on predator–prey interactions in lakes through a reduction in the visual conditions affecting foraging behaviour of visually oriented predators. 2. In this experiment, we studied the effects of visual range (25–200 cm) in combination with optically deteriorating treatments (algae, clay or brown humic water) on predator–prey interactions between pike (Esox lucius) and roach (Rutilus rutilus). We measured effects on reaction distance and strike distance for pike and escape distance for roach, when pike individuals were exposed to free‐swimming roach as well as to roach held in a glass cylinder. 3. We found that reaction distance decreased with decreasing visual range caused by increasing levels of algae, clay or humic matter. The effect of reaction distance was stronger in turbid water (clay, algae) than in the brown water treatment. 4. Strike distance was neither affected by visual range nor by optical treatment, but we found shorter strike distances when pike attacked roach using visual cues only (roach held in a cylinder) compared to when pike could use multiple senses (free‐swimming roach). Escape distance for roach was longer in turbid than in brown water treatments. 5. Changes in environmental drivers, such as eutrophication and brownification, affecting the optical climate should thus have consequences for the strength of predator–prey interactions through changes in piscivore foraging efficiency and prey escape behaviour. This in turn may affect lake ecosystems through higher‐order interactions.  相似文献   
7.
8.
Stable Isotopes and Carbon Cycle Processes in Forests and Grasslands   总被引:4,自引:0,他引:4  
Abstract: Scaling and partitioning are frequently two difficult challenges facing ecology today. With regard to ecosystem carbon balance studies, ecologists and atmospheric scientists are often interested in asking how fluxes of carbon dioxide scale across the landscape, region and continent. Yet at the same time, physiological ecologists and ecosystem ecologists are interested in dissecting the net ecosystem CO2 exchange between the biosphere and the atmosphere to achieve a better understanding of the balance between photosynthesis and respiration within a forest. In both of these multiple-scale ecological questions, stable isotope analyses of carbon dioxide can play a central role in influencing our understanding of the extent to which terrestrial ecosystems are carbon sinks. In this synthesis, we review the theory and present field evidence to address isotopic scaling of CO2 fluxes. We first show that the 13C isotopic signal which ecosystems impart to the atmosphere does not remain constant over time at either temporal or spatial scales. The relative balances of different biological activities and plant responses to stress result in dynamic changes in the 13C isotopic exchange between the biosphere and atmosphere, with both seasonal and stand-age factors playing major roles influencing the 13C biosphere-atmosphere exchange. We then examine how stable isotopes are used to partition net ecosystem exchange fluxes in order to calculate shifts in the balance of photosynthesis and respiration. Lastly, we explore how fundamental differences in the 18O isotopic gas exchange of forest and grassland ecosystems can be used to further partition terrestrial fluxes.  相似文献   
9.
Leaf water contains naturally occurring stable isotopes of oxygen and hydrogen in abundances that vary spatially and temporally. When sufficiently understood, these can be harnessed for a wide range of applications. Here, we review the current state of knowledge of stable isotope enrichment of leaf water, and its relevance for isotopic signals incorporated into plant organic matter and atmospheric gases. Models describing evaporative enrichment of leaf water have become increasingly complex over time, reflecting enhanced spatial and temporal resolution. We recommend that practitioners choose a model with a level of complexity suited to their application, and provide guidance. At the same time, there exists some lingering uncertainty about the biophysical processes relevant to patterns of isotopic enrichment in leaf water. An important goal for future research is to link observed variations in isotopic composition to specific anatomical and physiological features of leaves that reflect differences in hydraulic design. New measurement techniques are developing rapidly, enabling determinations of both transpired and leaf water δ18O and δ2H to be made more easily and at higher temporal resolution than previously possible. We expect these technological advances to spur new developments in our understanding of patterns of stable isotope fractionation in leaf water.  相似文献   
10.
Mucin-type O-glycosylation is initiated by a large family of UDP- GalNAc: polypeptide N -acetyl-galactosaminyltransferases (GalNAc- transferases). Individual GalNAc-transferases appear to have different functions and Northern analysis indicates that they are differently expressed in different organs. This suggests that O-glycosylation may vary with the repertoire of GalNAc-transferases expressed in a given cell. In order to study the repertoire of GalNAc-transferases in situ in tissues and changes in tumors, we have generated a panel of monoclonal antibodies (MAbs) with well defined specificity for human GalNAc-T1, -T2, and -T3. Application of this panel of novel antibodies revealed that GalNAc- transferases are differentially expressed in different cell lines, in spermatozoa, and in oral mucosa and carcinomas. For example, GalNAc-T1 and -T2 but not -T3 were highly expressed in WI38 cells, and GalNAc-T3 but not GalNAc-T1 or -T2 was expressed in spermatozoa. The expression patterns in normal oral mucosa were found to vary with cell differentiation, and for GalNAc-T2 and -T3 this was reflected in oral squamous cell carcinomas. The expression pattern of GalNAc-T1 was on the other hand changed in tumors to either total loss or expression in cytological poorly differentiated tumor cells, where the normal undifferentiated cells lacked expression. These results demonstrate that the repertoire of GalNAc-transferases is different in different cell types and vary with cellular differentiation, and malignant transformation. The implication of this is not yet fully understood, but it suggests that specific changes in sites of O-glycosylation of proteins may occur as a result of changes in the repertoire of GalNAc-transferases.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号