首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   5篇
  2021年   3篇
  2020年   1篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1991年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1969年   1篇
排序方式: 共有53条查询结果,搜索用时 552 毫秒
1.
[D-Ala2,Leu5,Cys6]Enkephalin (DALCE) is a synthetic enkephalin analog which contains a sulfhydryl group. DALCE binds with high affinity to delta-receptors, with moderate affinity to mu-receptors, and with negligible affinity to kappa-receptors. Pretreatment of rat brain membranes with DALCE resulted in concentration-dependent loss of delta-binding sites. Using 2 nM [3H][D-Pen2,D-Pen5]enkephalin (where Pen represents penicillamine) to label delta-sites, 50% loss of sites occurred at about 3 microM DALCE. Loss of sites was not reversed by subsequent incubation in buffer containing 250 mM NaCl and 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p), conditions which cause dissociation of opiate agonists. By contrast, the enkephalin analogs [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, [D-Pen2,D-Pen5]enkephalin, and [D-Ala2,D-Leu5,Lys6]enkephalin were readily dissociated by NaCl and Gpp(NH)p, producing negligible loss at 3 microM. This suggests that DALCE binds covalently to the receptors. Pretreatment of membranes with the reducing agents dithiothreitol and beta-mercaptoethanol had no effect on opiate binding. Thus, loss of sites required both specific recognition by opiate receptors and a thiol group. The irreversible effect of DALCE was completely selective for delta-receptors. Pretreatment with DALCE had no effect on binding of ligands to mu- or kappa-receptors. The effect of DALCE on delta-binding was: 1) markedly attenuated by inclusion of dithiothreitol in the preincubation buffer, 2) partially reversed by subsequent incubation with dithiothreitol, 3) slightly enhanced when converted to the disulfide-linked dimer, and 4) prevented by blocking the DALCE sulfhydryl group with N-ethylmaleimide or iodoacetamide. These results indicate that DALCE binds covalently to delta-receptors by forming a disulfide bond with a sulfhydryl group in the binding site. The mechanism may involve a thiol-disulfide exchange reaction.  相似文献   
2.
The intrapulmonary instillation of C5a results in a local inflammatory response that, in this site, is accompanied by a decrease in local blood flow. Reversal of this decrease by vasodilators or the thromboxane synthesis inhibitor dazmegral has been shown to result in enhanced lung inflammation. In the present study the mechanisms underlying the decrease in flow in pulmonary inflammation were investigated in the rabbit in vivo and in the isolated blood-perfused rabbit lung. In vivo, the decrease in local blood flow was shown to be dependent on circulating neutrophils. In the isolated blood-perfused lung, inflammation induced by airway instillation of C5a was similar histologically to that seen in vivo and was also accompanied by a decrease in local blood flow. The decrease in blood flow appeared to require circulating neutrophils and was prevented by dazmegral and the platelet-activating factor (PAF) antagonists WEB 2086 and L-659,989. Furthermore, no decrease occurred in aspirin-treated lungs perfused with normal blood, suggesting that the source of thromboxane was lung rather than circulating cells. The decrease in blood flow in inflammation did not appear to be a consequence of hypoxic vasoconstriction. Inflammation in the guinea pig lung was also accompanied by a decrease in local blood flow and was also prevented by dazmegral and PAF antagonists. We conclude that local inflammation in the lung is accompanied by a decrease in blood flow that involves neutrophils and the lipid mediators PAF and thromboxane. We suggest that this form of negative feedback by the neutrophil serves to control the inflammatory response.  相似文献   
3.
The role of alveolar macrophages (AM) in host defense against pulmonary infection has been difficult to establish using in vivo models. This may reflect a reliance on models of fulminant infection. To establish a unique model of resolving infection, with which to address the function of AM, C57BL/6 mice received low-dose intratracheal administration of pneumococci. Administration of low doses of pneumococci produced a resolving model of pulmonary infection characterized by clearance of bacteria without features of pneumonia. AM depletion in this model significantly increased bacterial outgrowth in the lung. Interestingly, a significant increase in the number of apoptotic AM was noted with the low-dose infection as compared with mock infection. Caspase inhibition in this model decreased AM apoptosis and increased the number of bacteremic mice, indicating a novel role for caspase activation in pulmonary innate defense against pneumococci. These results suggest that AM play a key role in clearance of bacteria from the lung during subclinical infection and that induction of AM apoptosis contributes to the microbiologic host defense against pneumococci.  相似文献   
4.

Background  

Choriocarcinoma is an aggressive neoplasm arising in the body of the uterus. The disease normally spreads to lung and brain.  相似文献   
5.
6.

Introduction  

Development of cell therapies for repairing the intervertebral disc is limited by the lack of a source of healthy human disc cells. Stem cells, particularly mesenchymal stem cells, are seen as a potential source but differentiation strategies are limited by the lack of specific markers that can distinguish disc cells from articular chondrocytes.  相似文献   
7.
Although small molecules that modulate amyloid formation in vitro have been identified, significant challenges remain in determining precisely how these species act. Here we describe the identification of rifamycin SV as a potent inhibitor of β(2) microglobulin (β(2)m) fibrillogenesis when added during the lag time of assembly or early during fibril elongation. Biochemical experiments demonstrate that the small molecule does not act by a colloidal mechanism. Exploiting the ability of electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) to resolve intermediates of amyloid assembly, we show instead that rifamycin SV inhibits β(2)m fibrillation by binding distinct monomeric conformers, disfavoring oligomer formation and diverting the course of assembly to the formation of spherical aggregates. The results demonstrate the power of ESI-IMS-MS to identify specific protein conformers as targets for intervention in fibrillogenesis using small molecules and reveal a mechanism of action in which ligand binding diverts unfolded protein monomers toward alternative assembly pathways.  相似文献   
8.
Fragmentation of amyloid fibrils produces fibrils that are reduced in length but have an otherwise unchanged molecular architecture. The resultant nanoscale fibril particles inhibit the cellular reduction of the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), a substrate commonly used to measure cell viability, to a greater extent than unfragmented fibrils. Here we show that the internalization of β2-microglobulin (β2m) amyloid fibrils is dependent on fibril length, with fragmented fibrils being more efficiently internalized by cells. Correspondingly, inhibiting the internalization of fragmented β2m fibrils rescued cellular MTT reduction. Incubation of cells with fragmented β2m fibrils did not, however, cause cell death. Instead, fragmented β2m fibrils accumulate in lysosomes, alter the trafficking of lysosomal membrane proteins, and inhibit the degradation of a model protein substrate by lysosomes. These findings suggest that nanoscale fibrils formed early during amyloid assembly reactions or by the fragmentation of longer fibrils could play a role in amyloid disease by disrupting protein degradation by lysosomes and trafficking in the endolysosomal pathway.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号