首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   34篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2012年   1篇
  2011年   1篇
  2010年   4篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   6篇
  2000年   4篇
  1999年   8篇
  1998年   2篇
  1997年   7篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   7篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1977年   1篇
  1973年   3篇
  1971年   1篇
  1969年   1篇
排序方式: 共有104条查询结果,搜索用时 39 毫秒
1.
2.
3.
4.
Complexes formed between Actinomycin D (ActD) and the tetranucleotides d(AGCT)2 and d(CGCG)2 were studied in detail by one and two-dimensional 1H and 31P NMR. The 31P two dimensional chemical exchange experiment, at room temperature on saturated complexes (1:1), showed unambiguously that the asymmetrical phenoxazone ring binds to the unique GC site under the two possible orientations in the d(AGCT)2 tetranucleotide but adopts a single orientation in the d(CGCG)2 tetranucleotide. For the d(CGCG)2:Act D saturated complex, complete assignments of all protons and phosphorus signals of the two-nucleotide strands, as well as of the two cyclic pentapeptide chains has allowed us to study in details the conformational features of the complex from NOE and coupling constants analysis. The tetranucleotide remains in a right-handed duplex, but the sugar puckers are modified for residues at the intercalation site. A uniform C2' endo pucker is observed for residues on the strand facing the quinoid side of the phenoxazone ring while a C2' endo-C3-endo equilibrium about 60% of C2' endo is proposed for the two residues on the strand facing the benzenoid side of the phenoxazone ring. In contrast to previous studies on ActD-DNA interactions, we have been able to measure the 3J phosphorus-proton coupling constants at the intercalation site but also adjacent to it, showing that 31P chemical shifts are not simply related to the backbone conformation. Molecular mechanics calculations, using empirical distances deduced from NOE effects as restrained distances during minimizations, led to a model differing mainly from those previously published by orientation of the N methyl groups of both N-Methyl-Valines.  相似文献   
5.
A gene, mpl, encoding UDP-N-acetylmuramate:L-alanyl-gamma-D-glutamyl-meso-diaminopimelat e ligase was recognized by its amino acid sequence homology with murC as the open reading frame yjfG present at 96 min on the Escherichia coli map. The existence of such an enzymatic activity was predicted from studies indicating that reutilization of the intact tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate occurred and accounted for well over 30% of new cell wall synthesis. Murein tripeptide ligase activity could be demonstrated in crude extracts, and greatly increased activity was produced when the gene was cloned and expressed under control of the trc promoter. A null mutant totally lacked activity but was viable, showing that the enzyme is not essential for growth.  相似文献   
6.
Propionibacterium freudenreichii plays an important role in Swiss cheese ripening (it produces propionic acid, acetic acid, and CO2). Moreover, autolysis of this organism certainly contributes to proteolysis and lipolysis of the curd because intracellular enzymes are released. By varying external factors, we determined the following conditions which promoted autolysis of both whole cells and isolated cell walls of P. freudenreichii CNRZ 725: (i) 0.1 M potassium phosphate buffer (pH 5.8) at 40°C and (ii) 0.05 to 0.1 M KCl at 40°C. We found that early-exponential-phase cells possessed the highest autolytic activity. It should be emphasized that the pH of Swiss cheese curd (pH 5.5 to 5.7) is near the optimal pH which we determined. Ultrastructural observations by electron microscopy revealed a 16-nm-thick homogeneous cell wall, as well as degradation of the cell wall that occurred concomitantly with cell autolysis. In the presence of 0.05 M potassium chloride, there was a great deal of isolated cell wall autolysis (the optical density at 650 nm decreased 77.5% ± 7.3% in 3 h), and one-half of the peptidoglycan material was released. Finally, the main autolytic activity was due to an N-acetylglucosaminidase activity.  相似文献   
7.
Abstract Release of lipopolysaccharide from E. coli was studied in the presence of sub-minimal inhibitory concentrations of ethylenediaminetetraacetic acid (EDTA). In untreated cells no release was detected with 50 mM Mg2+ in the medium, but a steady release of over 50% of the synthesized lipopolysaccharide was observed with 0.1 mM Mg2+. EDTA at MIC/8 led to a 2- to 3-fold higher release, presumably by an adjustment of the concentration of unchelated Mg2+ to a value still sustaining normal growth but giving rise to a highly unstable outer membrane. No structural difference was observed between cell-bound and released lipopolysaccharide.  相似文献   
8.
The physiological properties of the EcoURF-1 open reading frame, which precedes the glmS gene at 84 min on the Escherichia coli chromosome (J. E. Walker, N. J. Gay, M. Saraste, and A. N. Eberle, Biochem. J. 224:799-815, 1984), were investigated. A thermosensitive conditional mutant in which the synthesis of the gene product was impaired at 43 degrees C was constructed. The inactivation of the gene in exponentially growing cells rapidly inhibited peptidoglycan synthesis. As a result, various alterations of cell shape were observed, and cell lysis finally occurred when the peptidoglycan content was 37% lower than that of normally growing cells. Analysis of the pools of peptidoglycan precursors revealed a large accumulation of N-acetylglucosamine-1-phosphate and the concomitant depletion of the pools of the seven peptidoglycan nucleotide precursors located downstream in the pathway, a result indicating that the mutational block was in the step leading from N-acetylglucosamine-1-phosphate and UTP to the formation of UDP-N-acetylglucosamine. In vitro assays showed that the overexpression of this gene in E. coli cells, directed by appropriate plasmids, led to a high overproduction (from 25- to 410-fold) of N-acetylglucosamine-1-phosphate uridyltransferase activity. This allowed us to purify this enzyme to homogeneity in only two chromatographic steps. The gene for this enzyme, which is essential for peptidoglycan and lipopolysaccharide biosyntheses, was designated glmU.  相似文献   
9.
Analyses of the peptidoglycan nucleotide precursor contents of enterococci and staphylococci treated with ramoplanin, tunicamycin, or vancomycin were carried out by high-pressure liquid chromatography coupled with mass spectrometry (MS). In all cases, a sharp increase in the UDP-N-actetylmuramoyl-pentapeptide or -pentadepsipeptide pool was observed. Concomitantly, new peptidoglycan nucleotide peptides of higher molecular masses with hexa- or heptapeptide moieties were identified: UDP-MurNAc-pentapeptide-Asp or pentadepsipeptide-Asp in enterococci and UDP-MurNAc-pentapeptide-Gly or -Ala and UDP-MurNAc-pentapeptide-Gly-Gly or -Ala-Gly in staphylococci. These new compounds are derivatives of normal UDP-MurNAc-pentapeptide or -pentadepsipeptide precursors with the extra amino acid(s) linked to the lysine epsilon-amino group as established by various analytical procedures (MS, MS-MS fragmentation, chemical analysis, and digestion with R39 D,D carboxypeptidase). Except for tunicamycin-treated cells, it was not possible to ascertain whether these unusual nucleotides were formed by direct addition of the amino acids to UDP-MurNAc-pentapeptide (or -pentadepsipeptide) or whether they arose by reverse reactions from lipid I intermediates to which the amino acids had been added.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号