首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2013年   1篇
  2003年   1篇
  1994年   1篇
  1992年   1篇
  1984年   1篇
排序方式: 共有5条查询结果,搜索用时 156 毫秒
1
1.
Fluorescent proteins (FPs) are widely used in biochemistry, biology and biophysics. For quantitative analysis of gene expression FPs are often used as marking molecules. Therefore, sufficient knowledge of maturation times and their affecting factors is of high interest. Here, we investigate the maturation process of the FPs GFP and mCherry expressed by the three closely related Escherichia coli strains of the Colicin E2 system, a model system for colicinogenic interaction. One strain, the C strain produces Colicin, a toxin to which the S strain is sensitive, and against which the R strain is resistant. Under the growth conditions used in this study, the S and R strain have similar growth rates, as opposed to the C strain whose growth rate is significantly reduced due to the toxin production. In combination with theoretical modelling we studied the maturation kinetics of the two FPs in these strains and could confirm an exponential and sigmoidal maturation kinetic for GFP and mCherry, respectively. Our subsequent quantitative experimental analysis revealed a high variance in maturation times independent of the strain studied. In addition, we determined strain dependent maturation times and maturation behaviour. Firstly, FPs expressed by the S and R strain mature on similar average time-scales as opposed to FPs expressed by the C strain. Secondly, dependencies of maturation time with growth conditions are most pronounced in the GFP expressing C strain: Doubling the growth rate of this C strain results in an increased maturation time by a factor of 1.4. As maturation times can vary even between closely related strains, our data emphasize the importance of profound knowledge of individual strains'' maturation times for accurate interpretation of gene expression data.  相似文献   
2.
The influence of mitochondrial creatine kinase on subcellular high energy systems has been investigated using isolated rat heart mitochondria, mitoplasts and intact heart and skeletal muscle tissue.In isolated mitochondria, the creatine kinase is functionally coupled to oxidative phosphorylation at active respiratory chain, so that it catalyses the formation of creatine phosphate against its thermodynamic equilibrium. Therefore the mass action ratio is shifted from the equilibrium ratio to lower values. At inhibited respiration, it is close to the equilibrium value, irrespective of the mechanism of the inhibition. The same results were obtained for mitoplasts under conditions where the mitochondrial creatine kinase is still associated with the inner membrane.In intact tissue increasing amounts of creatine phosphate are found in the mitochondrial compartment when respiration and/or muscle work are increased. It is suggested that at high rates of oxidative phosphorylation creatine phosphate is accumulated in the intermembrane space due to the high activity of mitochondrial creatine kinase and the restricted permeability of reactants into the extramitochondrial space. A certain amount of this creatine phosphate leaks into the mitochondrial matrix.This leak is confirmed in isolated rat heart mitochondria where creatine phosphate is taken up when it is generated by the mitochondrial creatine kinase reaction. At inhibited creatine kinase, external creatine phosphate is not taken up. Likewise, mitoplasts only take up creatine phosphate when creatine kinase is still associated with the inner membrane. Both findings indicate that uptake is dependent on the functional active creatine kinase coupled to oxidative phosphorylation.Creatine phosphate uptake into mitochondria is inhibited with carboxyatractyloside. This suggests a possible role of the mitochondrial adenine nucleotide translocase in creatine phosphate uptake.Taken together, our findings are in agreement with the proposal that creatine kinase operates in the intermembrane space as a functional unit with the adenine nucleotide translocase in the inner membrane for optimal transfer of energy from the electron transport chain to extramitochondrial ATP-consuming reactions.  相似文献   
3.
4.
The subcellular distribution of ATP, ADP, creatine phosphate and creatine was studied in normoxic control, isoprenaline-stimulated and potassium-arrested guinea-pig hearts as well as during ischemia and after reperfusion. The mitochondrial creatine phosphate/creatine ratio was closely correlated to the oxidative activity of the hearts. This was interpreted as an indication of a close coupling of mitochondrial creatine kinase to oxidative phosphorylation. To further investigate the functional coupling of mitochondrial creatine kinase to oxidative phosphorylation, rat or guinea-pig heart mitochondria were isolated and the mass action ratio of creatine kinase determined at active or inhibited oxidative phosphorylation or in the presence of high phosphate, conditions which are known to change the functional state of the mitochondrial enzyme. At active oxidative phosphorylation the mass action ratio was one-third of the equilibrium value whereas at inhibited oxidative phosphorylation (N2, oligomycin, carboxyatractyloside) or in the presence of high phosphate, the mass action ratio reached equilibrium values. These findings show that oxidative phosphorylation is essential for the regulation of the functional state of mitochondrial creatine kinase. The functional coupling of the mitochondrial creatine kinase and oxidative phosphorylation indicated from the correlation of mitochondrial creatine phosphate/creatine ratios with the oxidative activity of the heart in situ as well as from the deviation of the mass action ratio of the mitochondrial enzyme from creatine kinase equilibrium at active oxidative phosphorylation in isolated mitochondria is in accordance with the proposed operation of a creatine shuttle in heart tissue.  相似文献   
5.
The subcellular distribution of high-energy phosphates in various types of skeletal muscle of the rat was analysed by subfractionation of tissues in non-aqueous solvents. Different glycolytic and oxidative capacities were calculated from the ratio of phosphoglycerate kinase and citrate synthase activities, ranging from 25 in m. soleus to 130 in m. tensor fasciae latae. In the resting state, the subcellular contents of ATP, creatine phosphate and creatine were similar in m. soleus, m. vastus intermedius, m. gastrocnemius and m. tensor fasciae latae but, significantly, a higher extramitochondrial ADP-content was found in m. soleus. A similar observation was made in isometrically and isotonically working m. gastrocnemius. The extramitochondrial, bound ADP accounted fully for actin-binding sites in resting fast-twitch muscles, but an excess of bound ADP was found in m. soleus and working m. gastrocnemius. The amount of non-actin-bound ADP reached maximal values of approx. 1.2 nmol/mg total protein. It could not be enhanced further by prolonged isotonic stimulation or by increased isometric force development. It is suggested that non-actin-bound ADP is accounted for by actomyosin-ADP complexes generated during the contraction cycle. Binding of extramitochondrial ADP to actomyosin complexes in working muscles thus acts as a buffer for cytosolic ADP in addition to the creatine system, maintaining a high cytosolic phosphorylation potential also at increasing rates of ATP hydrolysis during muscle contraction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号