首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2019年   5篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  1997年   1篇
  1984年   1篇
排序方式: 共有30条查询结果,搜索用时 312 毫秒
1.
Cashew (Anacardium occidentale) is an economically important cash crop for many rural households in Tanzania. However, its production is constrained by some insect pests and diseases. As a prerequisite for the development of a more sustainable integrated insect pest and disease management strategy for cashew, information on the biology and ecology of the key insect pests and diseases in a changing environment, and on influencing biotic and abiotic factors, is needed. Surveys were conducted in the major cashew nut‐producing areas of Tanzania for two seasons: August to December, 2009, and August to December, 2010. Data on number of infested and infected shoots by key insect pests and diseases, natural enemies and associated farmer practices, namely synthetic pesticide use and intercropping systems, were collected from different subzones within agroecological zones. Our data showed that abundance and diversity of key cashew insect pests and diseases were influenced by agroecological zones and subzones. Intercropping was more commonly practised in the northern than in the southern zone. Agrochemicals were most frequently used in the southern agroecological zone and affected the occurrence of natural enemies, notably the weaver ant that was more abundant in the northern zone. Furthermore, our findings revealed that Helopeltis sp. and the powdery mildew remained the major constraints to cashew nut production in Tanzania.  相似文献   
2.
3.
Damage caused by invasive downey snow line mealybug, Rastrococcus iceryoides Green (Hemiptera: Pseudococcidae) has been reported to vary between 30% to complete crop loss where no control measure is applied. The current studies seek to determine factors influencing R. iceryoides population outbreaks, parasitoid – host and predator–prey relationships as well as predict optimal management strategies through weather modelling over a period of 28 months from 2008 to 2010 in Tanzania. The highest incidence of R. iceryoides was recorded during the dry season coinciding with the major mango fruiting season. The relationship between R. iceryoides and the parasitoid was positive but not significant, which implies the influence on outbreaks was negligible probably due to low percent parasitism (<12%). However, the predator abundance was directly and significantly related to that of R. iceryoides. Average temperature, average relative humidity, rainfall, and R. iceryoides abundance were autocorrelated to each other. Cross-correlation coef?cients vary significantly from ?0.286 to 0.589 for the pair-variable between R. iceryoides, temperature, relative humidity, rainfall, parasitism and predators. Our findings showed that temperature was the key climatic variable that significantly influenced R. iceryoides outbreaks while rainfall was significantly negatively associated with the pest. Time series analyses show R. iceryoides population increased 4 months after an increase in average temperature in all the sites, 11 months after rainfall and 11 months after relative humidity in Kibaha and Dar es Salaam, respectively. Our findings revealed that R. iceryoides is an excellent target for classical biological control. Thus, the importation of promising co-evolved parasitoid specific to R. iceryoides from the aboriginal home is crucial in formulating an efficient and sustainable management approaches against the invasive mealybug pest in mango agro-ecosystems.  相似文献   
4.
The African citrus triozid (ACT), Trioza erytreae Del Guercio, is a destructive pest particularly on citrus, and vectors, “Candidatus” Liberibacter africanus (CLaf), which is the causal agent of the African citrus greening disease. Our study seeks to establish the distribution and host‐plant relationship of ACT across citrus production areas in Kenya. We also modelled the risk of spread using the maximum entropy modelling algorithm with known occurrence data. Our results infer that ACT is widely distributed and causes severe damage to four alternative host plants belonging to the family Rutaceae. The adults, immature stages (eggs and nymphs), galls and the percentage of infested leaves were significantly higher in shaded than unshaded trees. However, adult ACTs preferred Kenyan highlands to Victoria Lake and coastal regions. The average area under the curve of the model predictions was 0.97, indicating an optimal model performance. The environmental variables that most influenced the prediction were the precipitation of wettest quarter, precipitation of wettest month, mean diurnal range, temperature seasonality and mean temperature of the coldest quarter. The current prediction of ACT exceeded its existing range, especially in the Western, Nyanza, Central, Rift valley and Eastern regions of Kenya. The model predicted a contraction of suitable habitats for a potential spread in 2040 with an inland shift to higher altitudes in the cooler regions. The potential for further expansion to climatically suitable areas was more pronounced for the 2080 forecast. These findings provide relevant information to improve monitoring/surveillance and designing IPM strategies to limit its spread and damage.  相似文献   
5.
In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest''s putative aboriginal home of Sri Lanka was investigated. Morphometry using wing veins and tibia length was used to separate B. invadens populations from other closely related Bactrocera species. The Principal component analysis yielded 15 components which correspond to the 15 morphometric measurements. The first two principal axes contributed to 90.7% of the total variance and showed partial separation of these populations. Canonical discriminant analysis indicated that only the first five canonical variates were statistically significant. The first two canonical variates contributed a total of 80.9% of the total variance clustering B. invadens with other members of the B. dorsalis complex while distinctly separating B. correcta, B. cucurbitae, B. oleae and B. zonata. The largest Mahalanobis squared distance (D2 = 122.9) was found to be between B. cucurbitae and B. zonata, while the lowest was observed between B. invadens populations against B. kandiensis (8.1) and against B. dorsalis s.s (11.4). Evolutionary history inferred by the Neighbor-Joining method clustered the Bactrocera species populations into four clusters. First cluster consisted of the B. dorsalis complex (B. invadens, B. kandiensis and B. dorsalis s. s.), branching from the same node while the second group was paraphyletic clades of B. correcta and B. zonata. The last two are monophyletic clades, consisting of B. cucurbitae and B. oleae, respectively. Principal component analysis using the genetic distances confirmed the clustering inferred by the NJ tree.  相似文献   
6.
Therapeutic targeting of the adenosine triphosphate (ATP) machinery of Mycobacterium tuberculosis (Mtb) has recently presented a potent and alternative measure to halt the pathogenesis of tuberculosis. This has been potentiated by the development of bedaquiline (BDQ), a novel small molecule inhibitor that selectively inhibits mycobacterial F1Fo-ATP synthase by targeting its rotor c-ring, resulting in the disruption of ATP synthesis and consequential cell death. Although the structural resolution of the mycobacterial C9 ring in co`mplex with BDQ provided the first-hand detail of BDQ interaction at the c-ring region of the ATP synthase, there still remains a need to obtain essential and dynamic insights into the mechanistic activity of this drug molecule towards crucial survival machinery of Mtb. As such, for the first time, we report an atomistic model to describe the structural dynamics that explicate the experimentally reported antagonistic features of BDQ in halting ion shuttling by the mycobacterial c-ring, using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Surface Area methods. Results showed that BDQ exhibited a considerably high ΔG while it specifically maintained high-affinity interactions with Glu65B and Asp32B, blocking their crucial roles in proton binding and shuttling, which is required for ATP synthesis. Moreover, the bulky nature of BDQ induced a rigid and compact conformation of the rotor c-ring, which impedes the essential rotatory motion that drives ion exchange and shuttling. In addition, the binding affinity of a BDQ molecule was considerably increased by the complementary binding of another BDQ molecule, which indicates that an increase in BDQ molecule enhances inhibitory potency against Mtb ATP synthase. Taken together, findings provide atomistic perspectives into the inhibitory mechanisms of BDQ coupled with insights that could enhance the structure-based design of novel ATP synthase inhibitors towards the treatment of tuberculosis.  相似文献   
7.
This study examined the performance of pilot-scale vertical subsurface flow constructed wetlands (VSF–CWs) planted with three indigenous plants, i.e. Typha latifolia, Cyperus alternifolius, and Cynodon dactylon, in removing heavy metals from secondary treated refinery wastewater under tropical conditions. The T. latifolia-planted VSF–CW had the best heavy metal removal performance, followed by the Cyperus alternifolius-planted VSF–CW and then the Cynodon dactylon-planted VSF–CW. The data indicated that Cu, Cr, Zn, Pb, Cd, and Fe were accumulated in the plants at all the three VSF–CWs. However, the accumulation of the heavy metals in the plants accounted for only a rather small fraction (0.09–16%) of the overall heavy metal removal by the wetlands. The plant roots accumulated the highest amount of heavy metals, followed by the leaves, and then the stem. Cr and Fe were mainly retained in the roots of T. latifolia, Cyperus alternifolius, and Cynodon dactylon (TF < 1), meaning that Cr and Fe were only partially transported to the leaves of these plants. This study showed that VSF–CWs planted with T. latifolia, Cyperus Alternifolius, and Cynodon dactylon can be used for the large-scale removal of heavy metals from secondary refinery wastewater.  相似文献   
8.
We have previously shown that a pretreatment with phorbol12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC),reduced deoxygenation-induced K+loss and Ca2+ uptake and preventedcell dehydration in sickle anemia red blood cells (SS cells) (H. Fathallah, E. Coezy, R.-S. De Neef, M.-D. Hardy-Dessources, and F. Giraud. Blood 86: 1999-2007,1995). The present study explores the detailed mechanism of thisPMA-induced inhibition. The main findings are, first, the detection ofPKC and PKC in normal red blood cells and the demonstration that both isoforms are expressed at higher levels in SS cells. The -isoform only is translocated to the membrane and activated by PMAand by elevation of cytosolicCa2+. Second, PMA is demonstratedto activate Ca2+ efflux indeoxygenated SS cells by a direct stimulation of the Ca2+ pump. PMA, moreover, inhibitsdeoxygenation-induced, charybdotoxin-sensitive K+ efflux in SS cells. Thisinhibition is partly indirect and explained by the reduceddeoxygenation-induced rise in cytosolicCa2+ resulting fromCa2+ pump stimulation. However, asignificant inhibition of theCa2+-activatedK+ channels(KCa channels) by PMA can also bedemonstrated when the channels are activated byCa2+ plus ionophore, underconditions in which the Ca2+ pumpis operating near its maximal extrusion rate, but swamped byCa2+ plus ionophore. The data thussuggest a PKC-mediated phosphorylation both of theCa2+ pump and of theKCa channel or an auxiliaryprotein.

  相似文献   
9.
African citrus greening (ACGD) and huanglongbing (HLB) diseases are the most damaging diseases of citrus worldwide. Currently, the disease has no cure and has been attributed to the collapse of the citrus industry in several countries. In Africa, the causative agent “Candidatus” Liberibacter africanus is vectored by African citrus triozid (ACT) Trioza erytreae Del Guercio (Hemiptera: Triozidae). African citrus triozid is native to Africa but has been recently reported in Asia and Europe. Apart from citrus, Murraya koenigii (L.) and Clausena anisata (Willd) Hook. F. ex Benth. are also considered as preferred host plants. At present, there is scant information on host plant suitability and preference of T. erytreae. Also, there are contradictory reports on its reproduction and survival on rutaceous and non‐rutaceous host plants. In the present study, we tested the suitability and preference of rutaceous and non‐rutaceous trees and shrubs as potential ACT host plants in choice and no‐choice bioassays. The development from egg to the adult stage was longest on Calodendrum capense (Wright & Arn.) Engl. Host plants of superior quality accordingly to several ACT's biological parameters measured also revealed significantly higher morphometric characteristics. Our findings on the host status of the five rutaceous plants imply that these plants can greatly influence the population dynamics of ACT as well as the epidemiology of ACGD, and these can be a useful guide in the area‐wide management of the pest in Kenya.  相似文献   
10.

Background and aims

Quantitative relationships between soil N availability indices and tree growth are lacking in the oil sands region of Alberta and this can hinder the development of guidelines for the reclamation of the disturbed landscape after oil sands extraction. The aim of this paper was to establish quantitative relationships between soil N availability indices and tree growth in the oil sands region of Alberta.

Methods

In situ N mineralization rates, in situ N availability measured in the field using Plant Root Simulators (PRS? probes), laboratory aerobic and anaerobic soil N mineralization rates, and soil C/N and N content were determined for both the forest floor and the 0–20?cm mineral soil in eight jack pine (Pinus banksiana Lamb.) stands in the oil sands region in northern Alberta. Tree growth rates were determined based on changes in tree ring width in the last 6?years and as mean annual aboveground biomass increment.

Results

Soil N availability indices across those forest stands varied and for each stand it was several times higher in the forest floor than in the mineral soil. The in situ and laboratory aerobic and anaerobic soil N mineralization rates, soil mineralized N, in situ N availability measured using PRS probes, soil C/N ratio and N content in both the forest floor and mineral soil, as well as stand age were linearly correlated with tree ring width of jack pine trees across the selected forest stands, consistent with patterns seen in other published studies and suggesting that N availability could be a limiting factor in the range of jack pine stands studied.

Conclusions

In situ and laboratory aerobic and anaerobic N mineralization rates and soil C/N ratio and N content can be used for predicting tree growth in jack pine forests in the oil sand region. Laboratory based measurements such as aerobic and anaerobic N mineralization rates and soil C/N ratio and N content would be preferable as they are more cost effective and equally effective for predicting jack pine growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号