首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   17篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   9篇
  2008年   3篇
  2007年   8篇
  2006年   7篇
  2005年   8篇
  2004年   2篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1982年   2篇
  1977年   2篇
排序方式: 共有100条查询结果,搜索用时 140 毫秒
1.
The in vitro regeneration of flower buds was studied in pedicel explants from tobacco (Nicotiana tabacum L., cv Petit Havana) transformed with Agrobacterium rhizogenes, pRi 1855 (agropine type). At a low concentration (0.1 micromolar) of 1-naphthalene-acetic acid, pedicel strips from phenotypically aberrant plants regenerated two to three times more flower buds than explants from untransformed tobacco. Intermediate bud numbers were observed in transformants with a less extreme phenotype. The results can be explained by an increased sensitivity of the transformed explants to auxin with respect to flower bud regeneration. The effect of transformation on the auxin response is fully accounted for by the absence of a negative interaction of endogenous ethylene with 1-naphthaleneacetic acid, a phenomenon normally encountered in untransformed tissues. Three observations led to this conclusion. Application of 1 micromolar AgNO3 to untransformed explants increased the number of flower buds to the level observed in transformed tissues but had no effect on transformed pedicel strips; exposure to 10 microliters per liter ethylene strongly reduced the response to auxin at all concentrations in untransformed explants but was almost ineffective in the transformed tissues; and endogenous ethylene synthesis occurred at the same rate in both types of explants.  相似文献   
2.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
3.
Molecular drift of the bride of sevenless (boss) gene in Drosophila   总被引:6,自引:1,他引:5  
DNA sequences were determined for three to five alleles of the bride-of- sevenless (boss) gene in each of four species of Drosophila. The product of boss is a transmembrane receptor for a ligand coded by the sevenless gene that triggers differentiation of the R7 photoreceptor cell in the compound eye. Population parameters affecting the rate and pattern of molecular evolution of boss were estimated from the multinomial configurations of nucleotide polymorphisms of synonymous codons. The time of divergence between D. melanogaster and D. simulans was estimated as approximately 1 Myr, that between D. teissieri and D. yakuba as approximately 0.75 Myr, and that between the two pairs of sibling species as approximately 2 Myr. (The boss genes themselves have estimated divergence times approximately 50% greater than the species divergence times.) The effective size of the species was estimated as approximately 5 x 10(6), and the average mutation rate was estimated as 1-2 x 10(-9)/nucleotide/generation. The ratio of amino acid polymorphisms within species to fixed differences between species suggests that approximately 25% of all possible single-step amino acid replacements in the boss gene product may be selectively neutral or nearly neutral. The data also imply that random genetic drift has been responsible for virtually all of the observed differences in the portion of the boss gene analyzed among the four species.   相似文献   
4.
The function of the coronet region of the cherry tomato (Lycopersicon esculentum Cherry) as the main emission channel for ethylene was investigated. Ethylene was measured employing two laser-based detection systems, the photothermal deflection instrument and the photoacoustic detection setup. It is possible to detect minimum ethylene concentrations of 1 nL L-1 locally and rapidly with the first instrument and concentrations of 6 pL L-1 in a continuous flow system with the second setup. The continuous flow system makes it possible to change the air composition and to monitor its influence on the ethylene production of the tomato. The response times of the two instruments are 30 s and 4 min, respectively. The local character of the measurements makes it possible to determine the emission sites of the gaseous plant hormone ethylene and their relative importance. Transient anoxic conditions stop production of ethylene; return to aerobic conditions shows the evolution of the accumulated ethylene precursor 1-aminocyclopropane-1-carboxylic acid and its renewed production on the measured ethylene emission, with a time resolution of several minutes. Temporarily sealing the main emission channel yields results comparable to anoxia.  相似文献   
5.
We have analyzed the conserved regions of the gene coding for the circumsporozoite protein (CSP) in 12 species of Plasmodium, the malaria parasite. The closest evolutionary relative of P. falciparum, the agent of malignant human malaria, is P. reichenowi, a chimpanzee parasite. This is consistent with the hypothesis that P. falciparum is an ancient human parasite, associated with humans since the divergence of the hominids from their closest hominoid relatives. Three other human Plasmodium species are each genetically indistinguishable from species parasitic to nonhuman primates; that is, for the DNA sequences included in our analysis, the differences between species are not greater than the differences between strains of the human species. The human P. malariae is indistinguishable from P. brasilianum, and P. vivax is indistinguishable from P. simium; P. brasilianum and P. simium are parasitic to New World monkeys. The human P. vivax-like is indistinguishable from P. simiovale, a parasite of Old World macaques. We conjecture that P. malariae, P. vivax, and P. vivax-like are evolutionarily recent human parasites, the first two at least acquired only within the last several thousand years, and perhaps within the last few hundred years, after the expansion of human populations in South America following the European colonizations. We estimate the rate of evolution of the conserved regions of the CSP gene as 2.46 x 10(-9) per site per year. The divergence between the P. falciparum and P. reichenowi lineages is accordingly dated 8.9 Myr ago. The divergence between the three lineages leading to the human parasites is very ancient, about 100 Myr old between P. malariae and P. vivax (and P. vivax-like) and about 165 Myr old between P. falciparum and the other two.   相似文献   
6.
Oligomeric forms of the acetylcholine receptor are directly visualized by electron microscopy in receptor-rich membranes from torpedo marmorata. The receptor structures are quantitatively correlated with the molecular species so far identified only after detergent solubilization, and further related to the polypeptide composition of the membranes and changes thereof. The structural identification is made possibly by the increased fragility of the membranes after extraction of nonreceptor peptides and their subsequent disruption upon drying onto hydrophilic carbon supports. Receptor particles in native membranes depleted of nonreceptor peptides appear as single units of 7-8 nm, and double and multiple aggregates thereof. Particle doublets having a main-axis diameter of 19 +/- 3 nm predominate in these membranes. Linear aggregates of particles similar to those observed in rotary replicas of quick-frozen fresh electrolytes (Heuser, J.E. and S. R. Salpeter. 1979, J. Cell Biol. 82: 150-173) are also present in the alkaline-extracted membranes. Chemical modifications of the thiol groups shift the distribution of structural species. Dithiothreitol reduction, which renders almost exclusively the 9S, monomeric receptor form, results in the observation of the 7-8 nm particle in isolated form. The proportion of doublets increases in membranes alkylated with N-ethylmaleimide. Treatment with 5,5’-dithiobis-(nitrobenzoic acid) increases the proportion of higher oligomeric species, and particle aggregates (n=oligo) predominate. The nonreceptor v-peptide (doublet of M(r) 43,000) appears to play a role in the receptor monomer-polymer equilibria. Receptor protein and v-peptide co-aggregate upon reduction and reoxidation of native membranes. In membranes protected ab initio with N- ethylmaleimide, only the receptor appears to self-aggregate. The v-peptide cannot be extracted from these alkylated membranes, though it is easily released from normal, subsequently alkylated or reduced membranes. A stabilization of the dimeric species by the nonreceptor v-peptide is suggested by these experiments. Monospecific antibodies against the v-peptide are used in conjunction with rhodamine- labeled anti-bodies in an indirect immunoflourescence assay to map the vectorial exposure of the v-peptide. When intact membranes, v-peptide depleted and “holey” native membranes (treated with 0.3 percent saponin) are compared, maximal labeling is obtained with the latter type of membranes, suggesting a predominantly cytoplasmic exposure of the antigenic determinants of the v-peptide in the membrane. The influence of the v-peptide in the thiol-dependent interconversions of the receptor protein and the putative topography of the peptide are analyzed in the light of the present results.  相似文献   
7.
Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6–5.8 bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   
8.
* The results of a single publication stating that terrestrial plants emit methane has sparked a discussion in several scientific journals, but an independent test has not yet been performed. * Here it is shown, with the use of the stable isotope (13)C and a laser-based measuring technique, that there is no evidence for substantial aerobic methane emission by terrestrial plants, maximally 0.3% (0.4 ng g(-1) h(-1)) of the previously published values. * Data presented here indicate that the contribution of terrestrial plants to global methane emission is very small at best. * Therefore, a revision of carbon sequestration accounting practices based on the earlier reported contribution of methane from terrestrial vegetation is redundant.  相似文献   
9.
Using ethane as a marker for peroxidative damage to membranes by reactive oxygen species (ROS) we examined the injury of rice seedlings during submergence in the dark. It is often expressed that membrane injury from ROS is a post-submergence phenomenon occurring when oxygen is re-introduced after submergence-induced anoxia. We found that ethane production, from rice seedlings submerged for 24–72 h, was stimulated to 4–37 nl gFW−1, indicating underwater membrane peroxidation. When examined a week later the seedlings were damaged or had died. On de-submergence in air, ethane production rates rose sharply, but fell back to less than 0.1 nl gFW−1 h−1 after 2 h. We compared submergence-susceptible and submergence-tolerant cultivars, submergence starting in the morning (more damage) and in the afternoon (less damage) and investigated different submergence durations. The seedlings showed extensive fatality whenever total ethane emission exceeded about 15 nl gFW−1. Smaller amounts of ethane emission were linked to less extensive injury to leaves. Partial oxygen shortage (O2 levels <1%) imposed for 2 h in gas phase mixtures also stimulated ethane production. In contrast, seedlings under anaerobic gas phase conditions produced no ethane until re-aerated: then a small peak was observed followed by a low, steady ethane production. We conclude that damage during submergence is not associated with extensive anoxia. Instead, injury is linked to membrane peroxidation in seedlings that are partially oxygen deficient while submerged. On return to air, further peroxidation is suppressed within about 2 h indicating effective control of ROS production not evident during submergence itself.  相似文献   
10.
In Arabidopsis, resistance to the necrotrophic fungus Botrytis cinerea is conferred by ethylene via poorly understood mechanisms. Metabolomic approaches compared the responses of the wild‐type, the ethylene‐insensitive mutant etr1‐1, which showed increased susceptibility, and the constitutively active ethylene mutants ctr1‐1 and eto2 both exhibited decreased susceptibility to B. cinerea. Fourier transform–infrared (FT‐IR) spectroscopy demonstrated reproducible biochemical differences between treatments and genotypes. To identify discriminatory mass‐to‐charge ratios (m/z) associated with resistance, discriminant function analysis was employed on spectra derived from direct injection electrospray ionisation‐mass spectrometry on the derived principal components of these data. Ethylene‐modulated m/z were mapped onto Arabidopsis biochemical pathways and many were associated with hydroxycinnamate and monolignol biosynthesis, both linked to cell wall modification. A high‐resolution linear triple quadrupole‐Orbitrap hybrid system confirmed the identity of key metabolites in these pathways. The contribution of these pathways to defence against B. cinerea was validated through the use of multiple Arabidopsis mutants. The FT‐IR microspectroscopy indicated that spatial accumulation of hydroxycinnamates and monolignols at the cell wall to confine disease was linked ot ethylene. These data demonstrate the power of metabolomic approaches in elucidating novel biological phenomena, especially when coupled to validation steps exploiting relevant mutant genotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号