首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228篇
  免费   14篇
  2020年   1篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   8篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   14篇
  1984年   14篇
  1983年   8篇
  1982年   12篇
  1981年   10篇
  1980年   12篇
  1979年   8篇
  1978年   12篇
  1977年   16篇
  1976年   15篇
  1975年   9篇
  1974年   10篇
  1973年   7篇
  1972年   5篇
  1971年   1篇
  1962年   1篇
  1961年   2篇
  1960年   2篇
  1948年   1篇
排序方式: 共有242条查询结果,搜索用时 0 毫秒
1.
Five open reading frames designated nirB, nirD, nirE, nirC and cysG have been identified from the DNA sequence of the Escherichia coli nir operon. Complementation experiments established that the NirB, NirD and CysG polypeptides are essential and sufficient for NADH-dependent nitrite reductase activity (EC 1.6.6.4). A series of plasmids has been constructed in which each of the open reading frames has been fused in-phase with the beta-galactosidase gene, lacZ. Rates of beta-galactosidase synthesis during growth in different media revealed that nirB, -D, -E and -C are transcribed from the FNR-dependent promoter, p-nirB, located just upstream of the nirB gene: expression is co-ordinately repressed by oxygen and induced during anaerobic growth. Although the nirB, -D and -C open reading frames are translated into protein, no translation of nirE mRNA was detected. The cysG gene product is expressed from both p-nirB and a second, FNR-independent promoter, p-cysG, located within the nirC gene. No NADH-dependent nitrite reductase activity was detected in extracts from bacteria lacking either NirB or NirD, but a mixture of the two was as active as an extract from wild-type bacteria. Reconstitution of enzyme activity in vitro required stoichiometric quantities of NirB and NirD and was rapid and independent of the temperature during mixing. NirD remained associated with NirB during the initial stages of purification of the active enzyme, suggesting that NirD is a second structural subunit of the enzyme.  相似文献   
2.
3.
4.
Goats and some sheep synthesize a juvenile hemoglobin, Hb C (alpha 2 beta C2), at birth and produce this hemoglobin exclusively during severe anemia. Sheep that synthesize this juvenile hemoglobin are of the A haplotype. Other sheep, belonging to a separate group, the B haplotype, do not synthesize hemoglobin C and during anemia continue to produce their adult hemoglobin. To understand the basis for this difference we have determined the structural organization of the beta- globin locus of B-type sheep by constructing and isolating overlapping genomic clones. These clones have allowed us to establish the linkage map 5' epsilon I-epsilon II-psi beta I-beta B-epsilon III-epsilon IV- psi beta II-beta F3' in this haplotype. Thus, B sheep lack four genes, including the BC gene, and have only eight genes, compared with the 12 found in the goat globin locus. The goat beta-globin locus is as follows: 5' epsilon I-epsilon II-psi beta X-beta C-epsilon III-epsilon IV-psi beta Z-beta A-epsilon V-epsilon VI-psi beta Y-beta F3'. Southern blot analysis of A-type sheep reveals that these animals have a beta- globin locus similar to that of goat, i.e., 12 globin genes. Thus, the beta-globin locus of B-haplotype sheep resembles that of cows and may have retained the duplicated locus of the ancestor of cows and sheep. Alternatively, the B-sheep locus arrangement may be the result of a deletion of a four-gene set from the triplicated locus.   相似文献   
5.
Peptides derived from calf thymus H1 and rat liver H1, comprising only the globular and COOH-terminal domains of the intact molecule and therefore lacking NH2-terminal domains, have been shown by reconstitution to be as effective as the complete H1 molecule in inducing higher-order-chromatin structure. As the globular domain of H1 alone cannot induce chromatin folding, our results demonstrate that this function is primarily controlled by the COOH-terminal domain of the molecule. Surprisingly, these peptides do not locate correctly with respect to the nucleosome. This is demonstrated by their failure to confer upon reconstitutes the ability to protect DNA fragments of chromatosome length when digested with micrococcal nuclease. The precise placement of the H1 molecule (globular domain) with respect to the nucleosome is shown to be influenced by the "tail" domains of both H1 and the core histones.  相似文献   
6.
Following fungal inoculation or natural infection, five biphenyl phytoalexins (aucuparin and its 2′ and 4′ oxygenated derivatives) were induced variously in the sapwood of Aronia, Chaenomeles, Eriobotrya, Malus(three spp.) and of Sorbus aucuparia. By contrast, 14 dibenzofuran phytoalexins were induced variously in sapwood of Cotoneaster (7 spp.), Crateagus, Cydonia, Mespilus, Photinia, Pseudocydonia, Pyracantha, Pyrus and two Sorbus spp. (S. chamaemespilum and S. domestica). These were five cotonefurans, three eriobofurans, five pyrufurans and a 2,3,4,7,8-pentaoxygenated dibenzofuran trimethyl ether. No plant has yet been found to produce both types of phytoalexin, although o-hydroxybiphenyls are theoretically precursors of the dibenzofurans. The ability to synthesize either biphenyls or dibenzofurans appears to be genus-specific, except in the case of Sorbus. In 18 of the 38 species tested, these phytoalexins were accompanied by constitutive antifungal phenolics, most of which appeared to be released from bound (glycosidic) forms during the infection process. These were identified variously as hydroquinone, p-hydroxyacetophenone, acetovanillone, 5,7-dihydroxychromone, chrysin, sakuranetin and naringenin. Woody members of the subfamilies Prunoideae and Spiraeoideae failed to yield any phytoalexins on induction, but did contain constitutive antifungal compounds. The limited frequency of the phytoalexin response within the family as a whole is considered in relation to the accumulation of constitutive antifungal agents in these plants.  相似文献   
7.
The major phenolic acid found in gherkin tissues is p-coumaric acid, although cinnamic and caffeic acids are also present; these occur both free an  相似文献   
8.
Anthocyanins, variously identified in inflorescence, fruit, leaf or petiole of 59 representative species of the Araccae, are of a simple type. The most common pigment is cyanidin 3-rutinoside, while pelargonidin 3-rutinoside and cyanidin 3-glucoside are regularly present. Two rare pigments are: cyanidin 3-gentiobioside in Anchomanes and Rhektophyllum, both in the subfamily Lasioideae; and delphinidin 3-rutinoside in Schismatoglottis concinna. In a leaf survey of 144 species from 58 genera, flavone C-glycosides (in 82%) and proanthocyanidins (in 35–45%) were found as the major flavonoids. In the subfamily Calloideae, subtribe Symplocarpeae, flavonols replace glycoflavones as the major leaf components but otherwise flavonols are uncommon in the family (in 27% of the sample) and more usually co-occur with flavone C-glycosides. Two new flavonol glycosides were characterized from Lysichiton camtschatcense: kaempferol 3-(6-arabinosylgalactoside)and kaempferol 3-xylosylgalactoside. Simple flavones, luteolin and chrysoeriol (in 6%) were found only in the subtribes Arinae and Cryptocoryninae, subfamily Aroideae. Flavonoid sulphates were identified in only four taxa: glycoflavone sulphates in two Culcasia species and Philodendron ornatum and a mixture of flavone and flavonol sulphates in Scindapsus pictus. Caffeic ester sulphates were more common and their presence in Anthurium hookeri was confirmed. These results show that the Araceae are unusual amongst the monocots in their simple and relatively uniform flavonoid profile; no one subfamily is clearly distinguished, although at tribal level some significant taxonomic patterns are observed. The best defined groups are the subfamilies Lasioideae and Monsteroideae, and the tribes Symplocarpeae and Arophyteae, and the subtribe Arinae. The greatest chemical diversity occurs in Anthurium and Philodendron, but this may only reflect the fact that these are the two largest genera in the family. The origin and relationship of the Araccae to other monocot groups are discussed in the light of the flavonoid evidence.  相似文献   
9.
Twelve anthocyanins have been isolated from flax: the 3-glucosylrutinosides of pelargonidin, cyanidin and delphinidin; the 3-triglucosides of delphinid  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号