首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   45篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   9篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   6篇
  1992年   9篇
  1991年   3篇
  1990年   7篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   5篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1971年   3篇
排序方式: 共有138条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
The tyrosine aminotransferase (TAT) gene is expressed in a tissue and developmental-specific manner. In addition, this gene is regulated by glucocorticoid and polypeptide hormones and its expression is affected when a regulatory region near the albino locus of the mouse is deleted. In order to allow studies of the molecular effects of these deletion mutations we have isolated and characterized the mouse TAT gene. The gene is 9.2 x 10(3) bases in length and consists of 12 exons which give rise to a 2.3 x 10(3) base long messenger RNA. The DNA sequence at the 5' end of the gene was determined and compared with the corresponding sequence of the rat tyrosine aminotransferase gene. The sequence comparison showed extensive homology over the entire region sequenced. In addition, DNA: DNA heteroduplex studies between the mouse and rat tyrosine aminotransferase genes revealed that this homology extends over the entire gene and its flanking sequences. The mouse tyrosine aminotransferase gene has been mapped distal to the serum esterase-1 locus on mouse chromosome 8, using a restriction fragment length polymorphism between two mouse species. Since the albino deletions are located on mouse chromosome 7, the assignment of the TAT gene to chromosome 8 suggests that a regulatory factor(s) affecting TAT gene expression acts in trans.  相似文献   
5.
6.
Capsids of polyomaviruses--small, nonenveloped DNA viruses--consist of the major structural protein VP1 and the minor structural proteins VP2 and VP3. The contributions of the individual capsid proteins to functions of the viral particle, such as DNA encapsidation, cell receptor attachment, entry, and uncoating, are still not clear. Here we show that viruslike particles assembled in nuclei of insect cells from VP1 of the monkey B-lymphotropic papovavirus (LPV) are sufficient to unspecifically encapsidate DNA. LPV VP1 expressed in large amounts in insect cells by a baculovirus vector assembled spontaneously in the nuclei to form viruslike particles. After metrizamide equilibrium density gradient purification and nuclease digestion, a fraction of these particles was shown to contain VP1-associated linear, double-stranded DNA with a predominant size of 4.5 kb. The fraction of DNA-containing VP1 particles increased with time and dose of baculovirus vector infection. The DNA-containing particles, further purified by sucrose gradient centrifugation, appeared as "full" particles in negative-staining electron microscopy. As shown by DNA hybridization, the encapsidated DNA consisted of insect cell and baculoviral sequences with no apparent strong homology to LPV sequences. Three non-LPV VP1-derived host proteins with apparent molecular masses of approximately 14, 15, and 16 kDa copurified with the DNA-containing particles and may represent insect cell histones encapsidated together with the DNA. A similar species of host DNA was also found in purified LPV wild-type virions. These data suggest that LPV VP1 alone can be sufficient to encapsidate linear DNA in a sequence-independent manner.  相似文献   
7.
To analyze proteolytic processing of foamy (spuma) retroviruses, two mutations were generated in the presumed active-site triplet Asp-Ser-Gly in the predicted proteinase (PR) region of the human foamy virus (HSRV). The mutations changed either the presumed catalytic aspartic acid residue to a catalytically incompetent alanine or the adjacent serine to a threonine found in most cellular and retroviral proteases at this position. Both mutations were cloned into the full-length infectious HSRV DNA clone. Wild-type and S/T mutant genomes directed the synthesis of particles with similar infectious titers, while the HSRV D/A PR mutant was noninfectious. Immunoblot analysis of transfected cells revealed identical patterns for the wild-type and for the S/T PR mutant. HSRV D/A mutant-transfected cells expressed only a single Gag polyprotein of 78 kDa instead of the 78-kDa-74-kDa doublet found in HSRV-infected or wild-type-transfected cells. Analysis with pol-specific antisera yielded a protein of approximately 120 kDa reactive with antisera against pol- but not gag-specific domains. No Gag-Pol polyprotein was detected in this study. Electron microscopy analysis of transfected cells showed heterogeneous particle morphology in the case of the D/A mutant, with particles of normal appearance and particles of aberrant size and shape. These results indicate that foamy viruses have an aspartic PR that is essential for infectivity but not for formation of the 120-kDa Pol polyprotein.  相似文献   
8.
The inability of papillomaviruses (PV) to replicate in tissue culture cells has hampered the study of the PV life cycle. We investigated virus-cell interactions by the following two methods: (i) using purified bovine PV virions or human PV type 11 (HPV type 11) virus-like particles (VLP) to test the binding to eukaryotic cells and (ii) using different VLP-reporter plasmid complexes of HPV6b, HPV11 L1 or HPV11 L1/L2, and HPV16 L1 or HPV16 L1/L2 to study uptake of particles into different cell lines. Our studies showed that PV capsids bind to a broad range of cells in culture in a dose-dependent manner. Binding of PV capsids to cells can be blocked by pretreating the cells with the protease trypsin. Penetration of PV into cells was monitored by using complexes in which the purified PV capsids were physically linked to DNA containing the gene for beta-galactosidase driven by the human cytomegalovirus promoter. Expression of beta-galactosidase occurred in < 1% of the cells, and the efficiency of PV receptor-mediated gene delivery was greatly enhanced (up to 10 to 20% positive cells) by the use of a replication-defective adenovirus which promotes endosomal lysis. The data generated by this approach further confirmed the results obtained from the binding assays, showing that PV enter a wide range of cells and that these cells have all functions required for the uptake of PV. Binding and uptake of PV particles can be blocked by PV-specific antisera, and different PV particles compete for particle uptake. Our results suggest that the PV receptor is a conserved cell surface molecule(s) used by different PV and that the tropism of infection by different PV is controlled by events downstream of the initial binding and uptake.  相似文献   
9.
Chicken erythroblast cell strains and a cell line transformed by ts mutants of avian erythroblastosis virus (AEV) terminally differentiate when shifted to the nonpermissive temperature (42°C). The differentiated cells resemble mature erythrocytes with respect to morphology and ultrastructure, expression of differentiation-specific cell-surface antigens, pattern of protein synthesis and hemoglobin content. Terminal differentiation is dependent on conditions favoring the differentiation of normal erythroid progenitor cells, including an erythropoietin-like factor. Colonies of ts AEV cells grown at 42°C in semisolid medium resemble erythrocyte colonies derived from normal erythroid progenitor cells. The colonies obtained were comparable in size or slightly larger than the late erythroid precursor (CFU-E) colonies. These results suggest that AEV-transformed cells are blocked at a stage of differentiation that is more advanced than that of the uninfected target cells. ts AEV cells are irreversibly committed to terminal differentiation within 20 to 30 hr after shift to 42°C.  相似文献   
10.
Coexistence of four different forms of chromatin was observed by electron microscopy in nuclear spread preparations of monkey kidney cells during late stages of infection with herpes simplex virus (HSV-1 AMG). Besides typical nucleosomal (i) chromatin, thin (3-5 nm) strands morphologically indistinguishable from protein-free DNA were frequent, without (ii) or with (iii) sparse 10-22 nm large granules different from nucleosomes. In addition, uniformly thick (mean 17 nm), heavily stained chromatin strands (iv) were seen. The non-nucleosomal character of types (iii) and (iv) chromatin was also demonstrated by their resistance to histone removal in Sarkosyl and heparin. All four forms were seen in capsid-associated HSV-DNA molecules, and various combinations of these forms occurred in adjacent regions of the same DNA molecule, including the vicinity of replication branch points. Especially frequent were regions of chromatin types (ii) or (iii) alternating with thickly coated intercepts of type (iv) chromatin, the latter often displaying "bubble"-like strand separations. The appearance of chromatin types (ii)-(iv) was dependent on viral replication. These chromatin arrays were compared with structures observed in purified HSV-DNA from these cells. Patterns of single-stranded regions were found in HSV-DNA that were similar to those observed in the thickly coated type (iv) chromatin. It is concluded that, in these nuclei, non-nucleosomal arrangements can be formed, at least on viral DNA, under conditions of continued DNA synthesis and inhibited protein synthesis, and that single-stranded DNA is packed into a characteristic thick strand of non-nucleosomal chromatin by association with a special, probably virus-coded protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号