首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 31 毫秒
1
1.
Zhu  Dehuang  Hui  Dafeng  Wang  Mengqi  Yang  Qiong  Li  Zhen  Huang  Zijian  Yuan  Hanmeng  Yu  Shixiao 《Wetlands Ecology and Management》2021,29(1):129-141

Allometric growth reflects different allocation patterns and relationships of different components or traits of a plant and is closely related to ecosystem carbon storage. As an introduced species, the growth and carbon storage of Sonneratia apetala are still unclear. To derive allometric relationships of the mangrove S. apetala and to estimate carbon storage in mangrove ecosystems, we harvested 12 individual Sonneratia apetala trees from four different diameter classes in the Futian National Nature Reserve, Guangdong, China. Allometric growth models were fitted. The results showed that diameter at breast height (DBH) and wood density were better variables for predicting plant biomass (including above- and below-ground biomass) than plant height. There were significant power function relationships between biomass and DBH, with a mean allometric exponent of 2.22, and stem biomass accounted for 97% of the variation in S. apetala total biomass. Nearly isometric scaling relationships were developed between stem biomass and other biomass components. To better understand the carbon stocks of the S. apetala ecosystem, we categorized all trees into five age classes and quantified vegetation carbon storage. The S. apetala vegetation carbon storage ranged from 96.48 to 215.35 Mg C ha?1, and the carbon storage significantly increased with stand age. The allometric equations developed in this study are useful to estimate biomass and carbon storage of S. apetala ecosystems.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号