首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2003年   1篇
  2000年   1篇
  1984年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Background. Cell cycle regulatory proteins may be critical targets during carcinogenesis. We have previously shown that chronic H. pylori infection is associated with decreased expression of the cyclin dependent kinase inhibitor (CDI) p27kip1. Loss of p27kip1 and p16Ink4a (p16) expression, another CDI, has been reported during the progression of gastric tubular adenomas to advanced gastric cancer. The aim of the current study was to examine whether H. pylori infection also affects the expression of p16 in the gastric mucosa of H. pylori‐infected patients. Methods. p16 expression was evaluated in gastric antral biopsies by immunohistochemistry in 50 patients with nonulcer dyspepsia (n = 18 uninfected, n = 32 H. pylori infected, 24 by cagA+ strains). Adjacent sections were stained for proliferating epithelial cells (by Ki67) and for apoptotic cells (by TUNEL assay). Results. Both in H. pylori infected and uninfected patients the expression of p16 was higher in the neck and base of the gland than in the foveolar region. Epithelial staining for p16 was increased with H. pylori infection (31.3% vs. 11.1% in the foveolar region, 68.8% vs. 27.8% in the neck and 75% vs. 50% in the glandular base). There was no correlation between the expression of 16 and proliferation but there was a significant positive correlation between apoptosis and 16 immunostaining. Conclusions. The tumor suppressor gene 16 is over expressed in gastric epithelial cells of H. pylori infected patients and this is associated with an increase in apoptosis. These findings suggest a possible role for this cell cycle regulator in the increase in gastric cell turnover that is associated with H. pylori infection.  相似文献   
2.
The physical and chemical reaction pathways of the metabolite model compound benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in aqueous (double-stranded) DNA solutions was investigated as a function of temperature (0-30 degrees C), pH (7.0-9.5), sodium chloride concentration (0-1.5M) and DNA concentration in order to clarify the relationships between the multiple reaction mechanisms of this diol epoxide in the presence of nucleic acids. The reaction pathways are (1) noncovalent intercalative complex formation with DNA, characterized by the equilibrium constant K, and Xb the fraction of molecules physically bound; (2) accelerated hydrolysis of BPDE bound to DNA; (3) covalent binding to DNA; and (4) hydrolysis of free BPDE(kh). The DNA-induced hydrolysis of BPDE to tetraols and the covalent binding to DNA are parallel pseudo-first-order reactions. Following the rapid (millisecond time scale) noncovalent complex formation between BPDE and DNA, a much slower (approximately minutes) H+-dependent (either specific or general acid catalysis) formation of a DNA-bound triol carbonium ion (rate constant k3) occurs. At pH 7.0 the activation energy of k3 is 8.7 +/- 0.9 kcal/mol, which is lower than the activation energy of hydrolysis of free BPDE in buffer solution (14.2 +/- 0.7 kcal/mol), and which thus partially accounts for the acceleration of hydrolysis of BPDE upon complexation with DNA. The formation of the triol carbonium ion is followed by a rapid reaction with either water to form tetraols (rate constant kT), or covalent binding to DNA (kc). The fraction of BPDE molecules which undergo covalent binding is fcov approximately equal to kc/(kc + kT) = 0.10 and is independent of the overall BPDE reaction rate constant k = kh(1 - Xb) + k3Xb if Xb----1.0, or is independent of Xb as long as k3Xb much greater than kh(1 - Xb). Thus, at Xb = 0.9, fcov is independent of pH (7.0-9.5) even though k exhibits a 70-fold variation in this pH range and k----kh above pH 9 (k3 = kh). Similarly, fcov is independent of temperature (0-30 degrees C), while k varies by a factor of approx. 3. In the range of 0-1.5 M NaCl, fcov decreases from 0.10 to 0.04. These variations are attributed to a combination of salt-induced variations in the factors k3, Xb and the ratio kc/kT.  相似文献   
3.
Abnormal methylation in gene promoters is a hallmark of the cancer genome; however, factors that may influence promoter methylation have not been well elucidated. As the one-carbon metabolism pathway provides the universal methyl donor for methylation reactions, perturbation of this pathway might influence DNA methylation and, ultimately, affect gene functions. Utilizing approximately 800 breast cancer tumor tissues from a large population-based study, we investigated the relationships between dietary and genetic factors involved in the one-carbon metabolism pathway and promoter methylation of a panel of 13 breast cancer-related genes. We found that CCND2, HIN1 and CHD1 were the most "dietary sensitive" genes, as methylation of their promoters was associated with intakes of at least two out of the eight dietary methyl factors examined. On the other hand, some micronutrients (i.e., B 2 and B 6) were more "epigenetically active" as their intake levels correlated with promoter methylation status in 3 out of the 13 breast cancer genes evaluated. Both positive (hypermethylation) and inverse (hypomethylation) associations with high micronutrient intake were observed. Unlike what we saw for dietary factors, we did not observe any clear patterns between one-carbon genetic polymorphisms and the promoter methylation status of the genes examined. Our results provide preliminary evidence that one-carbon metabolism may have the capacity to influence the breast cancer epigenome. Given that epigenetic alterations are thought to occur early in cancer development and are potentially reversible, dietary modifications may offer promising venues for cancer intervention and prevention.  相似文献   
4.
5.
We set out to study the key effectors of resistance and sensitivity to ErbB2 tyrosine kinase inhibitors, such as lapatinib in ErbB2-positive breast and lung cancers. A cell-based in vitro site-directed mutagenesis lapatinib resistance model identified several mutations, including the gatekeeper ErbB2 mutation ErbB2-T798I, as mediating resistance. ErbB2-T798I engineered cell models indeed show resistance to lapatinib but remain sensitive to the irreversible EGFR/ErbB2 inhibitor, PD168393, suggestive of potential alternative treatment strategies to overcome resistance. Gene expression profiling studies identified a select group of downstream targets regulated by ErbB2 signaling and define PHLDA1 as an immediately downregulated gene upon oncogenic ErbB2 signaling inhibition. We find significant down-regulation of PHLDA1 in primary breast cancer and PHLDA1 is statistically significantly less expressed in ErbB2 negative compared with ErbB2 positive tumors consistent with its regulation by ErbB2. Lastly, PHLDA1 overexpression blocks AKT signaling, inhibits cell growth and enhances lapatinib sensitivity further supporting an important negative growth regulator function. Our findings suggest that PHLDA1 might have key inhibitory functions in ErbB2 driven lung and breast cancer cells and a better understanding of its functions might point at novel therapeutic options. In summary, our studies define novel ways of modulating sensitivity and resistance to ErbB2 inhibition in ErbB2-dependent cancers.  相似文献   
6.
Investigation was carried out on the epithelial cells obtained from 32 patients with benign and malignant tumors of large intestine aged from 42 to 80 years. Ratio of single-stranded and double-stranded DNAs in the epithelial cells of unchanged colorectal mucosa (12 patterns), adenomatous polyps (4) and adenocarcinomas (29) was studied using fluorimetric analysis. Increased instability of DNA secondary structure was revealed in the tumor cells comparing to the cells of unchanged colorectal epithelium. Relative accumulation of single-stranded DNA reflects structural and functional changes in gene apparatus of cells under malignization.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号