首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1986年   1篇
  1982年   1篇
  1979年   3篇
  1976年   1篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
1.
Novel backbone-to-side chain and backbone-to-backbone cyclic analogues of substance P (SP) were prepared by solid-phase synthesis and screened for biological activity. An analogue containing a thioether- lactam ring between positions 9 and 11 showed an EC50 value of 20nM toward the neurokinin 1 (NK-1) and was inactive toward the NK-2 and NK-3 receptors. On the other hand, in a multiple backbone cyclic peptide library of similar analogues, in which the sulphur was excluded from the ring, very low activity was detected. The activity was re-evaluated and was found to be even lower (EC50=0.11 mM ) than the previously published data. These results indicate that the thioether moiety has a crucial role in receptor activation. The results also show tolerance of the NK-1 receptor, but not NK-2 or NK-3, to cyclization of the C-terminal portion of the SP6–11 hexapeptide.  相似文献   
2.
Adaptation and facilitation in the barnacle photoreceptor   总被引:4,自引:4,他引:0       下载免费PDF全文
The barnacle photoreceptor sensitivity may either decrease (light adaptation) or increase (facilitation) after exposure to a conditioning light. The balance between adaptation and facilitation is influenced by at least three factors: initial sensitivity state of the cell, external calcium concentration, and conditioning intensity. Cells of very high sensitivity show mainly adaptation, which appears only for higher conditioning intensities and is suppressed in low-calcium media. Less sensitive cells, or those whose sensitivity is reduced by injury or metabolic decay, exhibit facilitation, expecially in low-calcium media and at intermediate conditioning intensities. Both phenomena show recovery time-courses of seconds-to-minutes. Models are proposed which relate light adaptation, as previously suggested, to increased internal calcium concentration, and facilitation either to decreased internal calcium concentration or to decreased activation "affinity" of ion-channel-blocking sites.  相似文献   
3.

Astroglia are neural cells, heterogeneous in form and function, which act as supportive elements of the central nervous system; astrocytes contribute to all aspects of neural functions in health and disease. Through their highly ramified processes, astrocytes form close physical contacts with synapses and blood vessels, and are integrated into functional syncytia by gap junctions. Astrocytes interact among themselves and with other cells types (e.g., neurons, microglia, blood vessel cells) by an elaborate repertoire of chemical messengers and receptors; astrocytes also influence neural plasticity and synaptic transmission through maintaining homeostasis of neurotransmitters, K+ buffering, synaptic isolation and control over synaptogenesis and synaptic elimination. Satellite glial cells (SGCs) are the most abundant glial cells in sensory ganglia, and are believed to play major roles in sensory functions, but so far research into SGCs attracted relatively little attention. In this review we compare SGCs to astrocytes with the purpose of using the vast knowledge on astrocytes to explore new aspects of SGCs. We survey the main properties of these two cells types and highlight similarities and differences between them. We conclude that despite the much greater diversity in morphology and signaling mechanisms of astrocytes, there are some parallels between them and SGCs. Both types serve as boundary cells, separating different compartments in the nervous system, but much more needs to be learned on this aspect of SGCs. Astrocytes and SGCs employ chemical messengers and calcium waves for intercellular signaling, but their significance is still poorly understood for both cell types. Both types undergo major changes under pathological conditions, which have a protective function, but an also contribute to disease, and chronic pain in particular. The knowledge obtained on astrocytes is likely to benefit future research on SGCs.

  相似文献   
4.
Lipopolysaccharide (LPS) has been used extensively to study neuroinflammation, but usually its effects were examined acutely (24 h<). We have shown previously that a single intraperitoneal LPS injection activated satellite glial cells (SGCs) in mouse dorsal root ganglia (DRG) and altered several functional parameters in these cells for at least one week. Here we asked whether the LPS effects would persist for 1 month. We injected mice with a single LPS dose and tested pain behavior, assessed SGCs activation in DRG using glial fibrillary acidic protein (GFAP) immunostaining, and injected a fluorescent dye intracellularly to study intercellular coupling. Electron microscopy was used to quantitate changes in gap junctions. We found that at 30 days post-LPS the threshold to mechanical stimulation was lower than in controls. GFAP expression, as well as the magnitude of dye coupling among SGCs were greater than in controls. Electron microscopy analysis supported these results, showing a greater number of gap junctions and an abnormal growth of SGC processes. These changes were significant, but less prominent than at 7 days post-LPS. We conclude that a single LPS injection exerts long-term behavioral and cellular changes. The results are consistent with the idea that SGC activation contributes to hyperalgesia.  相似文献   
5.
Glycogen represents the major brain energy reserve though its precise functions are still under debate. Glycogen has also been found in different cell types of the enteric nervous system (ENS), the largest and most complex component of the peripheral nervous system. In the present work we have demonstrated, by application of isozyme-specific antibodies, the presence of isozymes of glycogen phosphorylase (GP), one of the major control sites in glycogen metabolism, in the rat ENS. Immunohistochemistry revealed that isoform BB (brain) is the predominant isozyme expressed in enteric glial cells (EGC) and rare neurons of the myenteric and submucosal plexuses. Isoform MM (muscle) appears in cells which are, according to their location and morphology, probably interstitial cells of Cajal (ICC). In addition, both GP isoforms are expressed in longitudinal and circular intestinal smooth muscle layers. As GP BB is mainly regulated by the cellular AMP level, a special function of glycogen in the energy supply of neural gut functions is suggested.  相似文献   
6.
Herein, we report the synthesis of four new phenyl alkyl ether derivatives (7, 911) of the pyrazolo[1,5-a]pyrimidine acetamide class, all of which showed high binding affinity and selectivity for the TSPO and, in the case of the propyl, propargyl, and butyl ether derivatives, the ability to increase pregnenolone biosynthesis by 80–175% over baseline in rat C6 glioma cells. While these compounds fit our in silico generated pharmacophore for TSPO binding the current model does not account for the observed functional activity.  相似文献   
7.
Glial cells of the myenteric plexus from guinea pig small intestine were intracellulary filled with horseradish peroxidase (HRP), and histochemically stained. Camera lucida-like drawings of twenty cells were morphologically and morphometrically analyzed. The cells have very small ellipsoid, somata (85±0.7 m equivalent diameter, i.e., about 330 m3 volume), and send up to 20 thin and short processes (less than 26 to about 110 m in length). The morphology of the cells appears to depend on their location within the plexus. Glial cells located within the ganglia are similar to CNS protoplasmic astrocytes; they are star-shaped, and their very short processes are irregularly, branched. In contrast, glial cells within the interganglionic fiber tracts resemble CNS fibrous astrocytes. They extend longer processes that are parallel to the fiber tracts, and show less tendency to branch. We propose that the morphology of enteric glia is determined by the structure of the microenvironment. Both cell types form several flat endfeet at a basal lamina either surrounding blood vessels or at the ganglionic border. Furthermore, the occurrence of holes in the glial cell processes suggests that particular neuronal cell processes may be enwrapped in a specific manner. Fractal analysis of camera lucida-like drawings of the cells showed that the cells have a highly complex surface structure, comparable to that of protoplasmic astrocytes in the brain. These tiny cells may possess a membrane surface area of 2000 m2, almost 90% of which are contributed by the cell processes. This geometry may enable an intense exchange of metabolites and ions between neurons, glial cells, and the capillaries and/or environment of enteric ganglia.  相似文献   
8.
We show that the effect of an adapting light on the sensitivity of barnacle photoreceptors depends on the direction of net pigment transfer [rhodopsin (R) to metarhodopsin (M) or reverse] occasioned by the adapting light. For stimuli giving no net pigment transfer the state of the pigment appears irrelevant, R R having the same effect as M M. With respect to these, R M gives enhanced facilitation and M R depressed facilitation. This suggests a correlation with the prolonged depolarising after-potential (PDA) and the anti-PDA, which follow R M and M R stimuli respectively. These effects appear mainly in less sensitive cells and for higher amounts of conditioning light — but still well within the physiological range and well below the threshold for PDA and anti-PDA induction. The special interest of these results is that they appear to be interpretable only by assuming that absorption of light by metarhodopsin exerts an effect on the stimulus coincident response (LRP), the first demonstration of such an effect.Based on material presented at the European Neurosciences Meeting, Florence, September 1978  相似文献   
9.
A conditioning light can cause a decrease (adaptation) or an increase (facilitation) in the sensitivity of barnacle photoreceptors, as measured by the amplitude of the late receptor potential (LRP). We show that a net transfer of visual pigment from the rhodopsin (R) to the metarhodopsin (M) state induces a large facilitation whereas the reverse transfer results in a much smaller facilitation or even an adaptation. These effects were not due to the response to the conditioning light but to the pigment reactions. When the conditioning light did not alter the pigment population (i.e., M M, R R) it was followed by an intermediate degree of facilitation. These conclusions are correct for cells which have relatively low sensitivity. In sensitive cells, all pigment transitions produce adaptation.LRP facilitation and the prolonged depolarizing afterpotential (PDA) show several common characteristics with respect to pigment transitions: 1.Their magnitude increases with the amount of pigment transferred from R to M. 2. Both are depressed by the M R transition. 3. Their production is impeded by the M R transition. 4. The PDA itself is facilitated by the R M transition and this facilitation decays with a time course comparable to that of LRP facilitation. These results suggest that there may be an underlying process common to LRP facilitation and PDA.  相似文献   
10.
There is evidence that sensitization of neurons in dorsal root ganglia (DRG) may contribute to pain induced by intestinal injury. We hypothesized that obstruction-induced pain is related to changes in DRG neurons and satellite glial cells (SGCs). In this study, partial colonic obstruction was induced by ligation. The neurons projecting to the colon were traced by an injection of 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate into the colon wall. The electrophysiological properties of DRG neurons were determined using intracellular electrodes. Dye coupling was examined with an intracellular injection of Lucifer yellow (LY). Morphological changes in the colon and DRG were examined. Pain was assessed with von Frey hairs. Partial colonic obstruction caused the following changes. First, coupling between SGCs enveloping different neurons increased 18-fold when LY was injected into SGCs near neurons projecting to the colon. Second, neurons were not coupled to other neurons or SGCs. Third, the firing threshold of neurons projecting to the colon decreased by more than 40% (P < 0.01), and the resting potential was more positive by 4-6 mV (P < 0.05). Finally, the number of neurons displaying spontaneous spikes increased eightfold, and the number of neurons with subthreshold voltage oscillations increased over threefold. These changes are consistent with augmented neuronal excitability. The pain threshold to abdominal stimulation decreased by 70.2%. Inflammatory responses were found in the colon wall. We conclude that obstruction increased neuronal excitability, which is likely to be a major factor in the pain behavior observed. The augmented dye coupling between glial cells may contribute to the neuronal hyperexcitability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号