首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2007年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有14条查询结果,搜索用时 468 毫秒
1.
Climate change threatens organisms in a variety of interactive ways that requires simultaneous adaptation of multiple traits. Predicting evolutionary responses requires an understanding of the potential for interactions among stressors and the genetic variance and covariance among fitness‐related traits that may reinforce or constrain an adaptive response. Here we investigate the capacity of Acropora millepora, a reef‐building coral, to adapt to multiple environmental stressors: rising sea surface temperature, ocean acidification, and increased prevalence of infectious diseases. We measured growth rates (weight gain), coral color (a proxy for Symbiodiniaceae density), and survival, in addition to nine physiological indicators of coral and algal health in 40 coral genets exposed to each of these three stressors singly and combined. Individual stressors resulted in predicted responses (e.g., corals developed lesions after bacterial challenge and bleached under thermal stress). However, corals did not suffer substantially more when all three stressors were combined. Nor were trade‐offs observed between tolerances to different stressors; instead, individuals performing well under one stressor also tended to perform well under every other stressor. An analysis of genetic correlations between traits revealed positive covariances, suggesting that selection to multiple stressors will reinforce rather than constrain the simultaneous evolution of traits related to holobiont health (e.g., weight gain and algal density). These findings support the potential for rapid coral adaptation under climate change and emphasize the importance of accounting for corals’ adaptive capacity when predicting the future of coral reefs.  相似文献   
2.
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is part of a complex signaling system that affects a variety of important cell functions. PTEN antagonizes the action of PI3K by dephosphorylating the signaling lipid phosphatidylinositol 3,4,5-triphosphate. In the present study, we used a TAT fusion protein transduction system to elucidate the role of PTEN in eosinophils and airway inflammation. A small region of the HIV TAT protein (YGRKKRRQRRR), a protein transduction domain known to enter mammalian cells efficiently, was fused to the N terminus of PTEN. Flow cytometric analysis of annexin V- and propidium iodide-stained cells was used to assess eosinophil survival. A chemotaxis assay was performed using a Boyden chamber. Cell analysis in bronchoalveolar lavage fluid and histological examinations were performed using OVA-challenged A/J mice. We found that TAT-PTEN was successfully internalized into eosinophils and functioned as a phosphatase in situ. TAT-PTEN, but not a TAT-GFP control protein, blocked the ability of IL-5 to prevent the apoptosis of eosinophils from allergic subjects. The eotaxin-induced eosinophil chemotaxis was inhibited by TAT-PTEN in a dose-dependent manner. Intranasal pretreatment with TAT-PTEN, but not TAT-GFP, significantly inhibited the OVA-induced eosinophil infiltration in bronchoalveolar lavage fluid. Histological examination of the lung, including H&E and Alcian blue/periodic acid-Schiff staining, revealed that TAT-PTEN, but not TAT-GFP, abrogated eosinophilic inflammation and mucus production. Our results suggest that PTEN negatively regulates eosinophil survival, chemotaxis, and allergic inflammation. The pharmacological targeting of PTEN may constitute a new strategy for the treatment of eosinophilic disorders.  相似文献   
3.
The goal of the study was to investigate the effects of exogenous selenium (Se) on the tolerance of faba bean plants to lead (Pb) stress under P-deficient conditions. The bean plants were grown for 2 weeks on Hoagland solution supplied with Pb (0, 50 μM) and Se (0, 1.5, or 6 μM), separately or simultaneously. It was shown that Pb did not affect shoot growth but caused major damage in the leaves, which was accompanied by Pb accumulation in these tissues. The exposure of the shoots to Pb led to significant changes in the biochemical parameters: the MDA content, glutathione peroxidase (GSH-Px), guaiacol peroxidase (GPOX), and catalase (CAT) activity increased. Furthermore, Pb intensified O 2 ?? and H2O2 production. Both the Se concentrations used increased the chlorophyll b, chlorophyll a+b, and carotenoid content in the faba bean plants. Selenite also generally enhanced CAT, GPOX, and GSH-Px activities and the T-SH level. Our results imply that the degree of disturbances caused by Pb could be partially ameliorated by Se supplementation. Selenite at a lower dose alleviated Pb toxicity by decreased H2O2 and O 2 ?? production and decreased the GSH-Px, GPOX, and CAT activities. The beneficial effect of the higher selenite concentration could be related to reduction of lipid peroxidation in the shoots of the Pb-treated plants. However, the effect of Se on the Pb-stressed plants greatly depended on the selenite dose in the nutrient solution.  相似文献   
4.
Maize seedlings grown in a nutrient solution were treated with Cd (50, 100 µM) or Cu (50, 100 µM). Roots and separated leaf sections (from the youngest––basal, through the middle––mature, to the oldest––apical) were analysed. Shoot and root fresh weight, and root net growth rates were reduced significantly after Cu application in comparison to Cd. Copper (50, 100 µM) and cadmium (100 µM) decreased the sum of chlorophyll and total carotenoid pools mostly in mature and old leaf sections. The concentration of Cu and Cd increased in the old and mature leaf sections. Analysis of organic acids showed that both metals differently influenced the low-molecular-weight organic acids (LMWOAs) content in maize leaf sections. In mature sections, the excess Cu increased the succinate and tartrate contents, whereas in the young ones mainly the tartrate level was elevated. Cadmium elevated citrate accumulation in mature and old sections, compared to the control plants. Malate, the main LMWOA in maize leaves, increased only after addition of 100 µM of Cd (mature and old sections) or 50 µM of Cu (old sections). Analysis of LMWOAs in roots showed that the excess of Cd or Cu induced higher accumulation of tartrate and malate and, additionally, copper increased the citrate content.  相似文献   
5.
Plant and Soil - Ethylene-insensitive mutation (ein)-conferred Arabidopsis tolerance to Cd has been reported. However, the mechanisms involved are far from clear. This study explores possible...  相似文献   
6.
7.
Non-alcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and fibrosis and is believed to develop via a “two-hit process”; however, its pathophysiology remains unclear. Fibroblast growth factors (FGFs) are heparin-binding polypeptides with diverse biological activities in many developmental and metabolic processes. In particular, FGF5 is associated with high blood pressure. We investigated the function of FGF5 in vivo using spontaneously Fgf5 null mice and explored the role of diet in the development of NASH. Mice fed a high-fat diet gained little weight and had higher serum alanine transaminase, aspartate amino transferase, and non–high-density lipoprotein-cholesterol levels. Liver histology indicated marked inflammation, focal necrosis, fat deposition, and fibrosis, similar to the characteristics of NASH. FGF5 and a high-fat diet play significant roles in the pathophysiology of hepatic fibrosis and Fgf5 null mice may provide a suitable model for liver fibrosis or NASH.  相似文献   
8.
Isolated vacuoles of the liverwort Conocephalum conicum thallus cells were investigated using the patch-clamp technique. At high cytosolic Ca(2+) activities, slowly activating currents were evoked by positive potentials. The currents were conducted by the SV (slow-vacuolar) channel. When isolation of vacuoles was carried out at high Mg(2+) and low Ca(2+) concentration and the same proportion of the cations was kept in the bath, currents were recorded at negative potentials. Once activated, these currents persisted even after replacing Mg(2+) with K(+) in the bath. Sr(2+) and Ba(2+) were also effective activators of the currents. With a Cl(-) gradient, 10 mM in the bath and 100 mM in the lumen, currents were significantly reduced and the current-voltage characteristics shifted towards the reversal potential of Cl(-), indicating Cl(-) selectivity. Currents almost vanished after substituting Cl(-) with gluconate. They were strongly reduced by anion channel inhibitors 4,4'-diisothicyanatostilbene-2,2'-disulfonic acid (DIDS; 1 mM), anthracene-9-carboxylic acid (A9C; 2 mM) and ethacrinic acid (0.5 mM). Single-channel recordings revealed a 32 pS channel activating at negative voltages. It is concluded that the currents at negative potentials are carried by anion channels suitable for conducting anions from the cytosol to the vacuole. The anion channels were weakly calcium dependent, remaining active at physiological calcium concentration. The channels were almost equally permeable to Cl(-), NO3(-) and SO4(2-), and much less permeable to malate(2-). Anion channels did not respond to ATP addition. cAMP (10 microM) had a weak effect on anion channels. Protein kinase A (0.4 U) added to the medium caused no significant effect on anion channels.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号