首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   19篇
  2023年   2篇
  2021年   11篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   7篇
  2016年   9篇
  2015年   12篇
  2014年   11篇
  2013年   15篇
  2012年   10篇
  2011年   15篇
  2010年   10篇
  2009年   5篇
  2008年   11篇
  2007年   10篇
  2006年   10篇
  2005年   9篇
  2004年   7篇
  2003年   2篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   7篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1968年   1篇
排序方式: 共有226条查询结果,搜索用时 390 毫秒
1.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
2.
A thermotolerant methylotrophicBacillus sp. (KISRI TM1A, NCIMB 40040), isolated from the Kuwaiti environment and belonging to the group II spore-forming, bacilli, could not be correlated with any knownBacillus sp. It may, therefore, be a new species. It grew at temperatures from 37° to 58°C from pH 6.5 to 9.0 and on methanol up to 40 g l–1. It grew well in a chemostat. Its biomass yield coefficient was improved by about 30% by optimization of medium and growth conditions, reaching a maximum of 0.44g g–1 at 45°C pH 6.8 to 7.0, dilution rate 0.25 h–1 with methanol at 10 g l–1. Average crude protein and amino acid content were 84% and 60%, respectively, and maximum productivity attained under laboratory conditions was 5.06 g l–1h–1. It was concluded that this strain has good potential for use in single-cell protein production.  相似文献   
3.
Summary We describe a new solid-phase strategy for the selective reduction of the C=N bond in peptide oximes using a trialkylsilane in trifluoroacetic acid. The reduction is performed directly on the resin-bound peptide, with concomitant cleavage of the peptide from the resin and deblocking of protected side chains.  相似文献   
4.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
5.
Pseudomonas fluorescens 2-79 suppresses take-all, a major root disease of wheat caused by Gaeumannomyces graminis var. tritici. The bacteria produce an antibiotic, phenazine-1-carboxylic acid (PCA), and a fluorescent pyoverdin siderophore. Previous studies have established that PCA has an important role in the biological control of take-all but that antibiotic production does not account fully for the suppressiveness of the strain. To define the role of the pyoverdin siderophore more precisely, mutants deficient in production of the antibiotic, the siderophore, or both factors were constructed and compared with the parental strain for control of take-all on wheat roots. In all cases, strains that produced PCA were more suppressive than those that did not, and pyoverdin-deficient mutant derivatives controlled take-all as effectively as their respective fluorescent parental strains. Thus, the phenazine antibiotic was the dominant factor in disease suppression and the fluorescent siderophore had little or no role. The siderophore also was of minor importance in a second strain, P. fluorescens M4-80R, that does not produce PCA. Strains 2-79 and M4-80R both produced substances distinct from the pyoverdin siderophore that were responsible for fungal inhibition in vitro under iron limitation, but these substances also had, at most, a minor role in disease suppression in situ.  相似文献   
6.
The possibilities of using liquefied petroleum gas (LPG) heavy ends, predominantly volatile liquid n-alkanes (a location-specific hydrocarbon feedstock) for single-cell protein (SCP) production are examined against criteria established to define potentially attractive SCP production processes. The factors discussed include the use of the heat of vaporization for fermentor cooling, the efficiency of conversion of nalkane vapors, problems of maintaining constant composition substrates when feeding volatile liquid n-alkane vapors to laboratory fermentors, the possible solvent effect of liquid n-alkanes, and the possibilities of competitive inhibition. The study confirms that mixed volatile n-alkane feedstocks will introduce major physical and biological problems for both product and process research and development. Even when the technical problems are solved, the economic question of whether a direct production route using the feedstock as the fermentation substrate or an indirect route involving the conversion of the feedstock, by chemical means, into methanol, which can then be used as the fermentation substrate, needs careful examination.  相似文献   
7.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
8.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
9.
Background & objectivesRosuvastatin calcium (RC) is a potent and competitive synthetic inhibitor of HMG-CoA reductase used for the treatment of dyslipidemia. Guggulipid obtained from Commiphora mukul is used in the treatment of a wide variety of diseases such as atherosclerosis, hypercholesterolemia, rheumatism, and obesity. The present study evaluates the pharmacokinetic and pharmacodynamic interactions between RC and the standardized guggulipid extract in rats.Materials and methodsThe guggulipid extract was standardized for the presence of guggulsterones. The pharmacokinetic interaction was determined after a single dose administration of RC alone or in combination with the guggulipid extract or after multiple-dose administration of RC alone or RC along with the guggulipid extract for 14 days. To determine the pharmacodynamic interaction, RC and guggulipid extract were administered to hyperlipidemic rats for 14 days. The level of significance was determined using unpaired student’s t-test, one way ANOVA, the post-ANOVA Tukey test.ResultsStandardization of guggulipid extract showed it contains 7.5%w/w of guggulsterones. Guggulipid extract increased the bioavailability of RC in both single-dose and multiple-dose studies. Guggulipid extract reduced the rate of absorption (Ka) of RC but showed an increase in maximum serum concentration (Cmax). An in-vitro study using isolated rat intestine revealed that guggulipid extract decreased the rate of absorption of RC in the intestinal lumen. The hypolipidemic activity of RC was augmented by the guggulipid extract in hyperlipidemic rats.Interpretation & conclusionTherefore it is concluded that guggulipid extract increases the bioavailability of RC by delaying its Ka and augments its hypolipidemic action. However, it is recommended that a combination of RC with guggulipid extract should be used only after an adverse effect(s) of this combination are determined.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号