首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   224篇
  免费   15篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   7篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   14篇
  2015年   16篇
  2014年   13篇
  2013年   19篇
  2012年   14篇
  2011年   22篇
  2010年   9篇
  2009年   8篇
  2008年   15篇
  2007年   12篇
  2006年   12篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1989年   5篇
  1988年   1篇
  1985年   1篇
  1980年   2篇
  1969年   3篇
  1964年   1篇
  1961年   1篇
  1950年   1篇
排序方式: 共有240条查询结果,搜索用时 858 毫秒
1.
Interferon induces two antiviral actions against vesicular stomatitis virus by (i) inhibiting viral protein synthesis which leads to a reduction in virion production, and (ii) producing progeny which are deficient in infectivity (VSVIF). At low or physiological concentrations of interferon, while the virion production was decreased by less than 10-fold, the virion infectivity yield was suppressed more than 1000-fold. The VSVIF was found to be deficient (quantitatively) in envelop glycoprotein G and protein M. Tryptic peptide mapping indicated that there was no detectable structural abnormality in the G, M, and N proteins of VSVIF. The virion cores, lacking only the envelop G protein, isolated from VSVIF and control VSV have essentially identical specific infectivity. This indicated that the virion proteins L, N, NS, and M, as well as viral RNA that make up the virion core, must be functionally normal, and the observed deficiency in G protein was likely to be the cause of the functional deficiency of the virion. Low concentrations of DEAE-dextran, which is known to partially overcome the virion's dependence on the G protein for adsorption to the cell during infection, were found to enhance the infectivity of VSVIF more than the control virion. These results together indicated that the loss of infectivity in the VSVIF was due to the deficiency of the surface glycoprotein G.  相似文献   
2.
3.
The extensive use of nanoparticles (NPs) in diverse applications causes their localization to aquatic habitats, affecting the metabolic products of primary producers in aquatic ecosystems, such as algae. Synthesized calcium oxide nanoparticles (CaO NPs) are of the scarcely studied NPs. Thus, the current work proposed that the exposure to CaO NPs may instigate metabolic pathway to be higher than that of normally growing algae, and positively stimulate algal biomass. In this respect, this research was undertaken to study the exposure effect of CaO NPs (0, 20, 40, 60, 80, and 100 µg mL−1 ) on the growth, photosynthesis, respiration, oxidative stress, antioxidants, and lipid production of the microalga Coccomyxa chodatii SAG 216-2. The results showed that the algal growth concomitant with chlorophyll content, photosynthesis, and calcium content increased in response to CaO NPs. The contents of biomolecules such as proteins, amino acids, and carbohydrates were also promoted by CaO NPs with variant degrees. Furthermore, lipid production was enhanced by the applied nanoparticles. CaO NPs induced the accumulation of hydrogen peroxide, while lipid peroxidation was reduced, revealing no oxidative behavior of the applied nanoparticles on alga. Also, CaO NPs have a triggering effect on the antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase. The results recommended the importance of the level of 60 µg mL−1 CaO NPs on lipid production (with increasing percentage of 65% compared to control) and the highest dry matter acquisition of C. chodatii. This study recommended the feasibility of an integrated treatment strategy of CaO NPs in augmenting biomass, metabolic up-regulations, and lipid accumulation in C. chodatii.  相似文献   
4.
5.
6.
In cultivated grasses, tillering, spike architecture and seed shattering represent major agronomical traits. In barley, maize and rice, the NOOT‐BOP‐COCH‐LIKE (NBCL) genes play important roles in development, especially in ligule development, tillering and flower identity. However, compared with dicots, the role of grass NBCL genes is underinvestigated. To better understand the role of grass NBCLs and to overcome any effects of domestication that might conceal their original functions, we studied TILLING nbcl mutants in the non‐domesticated grass Brachypodium distachyon. In B. distachyon, the NBCL genes BdUNICULME4 (CUL4) and BdLAXATUM‐A (LAXA) are orthologous, respectively, to the barley HvUniculme4 and HvLaxatum‐a, to the maize Zmtassels replace upper ears1 and Zmtassels replace upper ears2 and to the rice OsBLADE‐ON‐PETIOLE1 and OsBLADE‐ON‐PETIOLE2/3. In B. distachyon, our reverse genetics study shows that CUL4 is not essential for the establishment of the blade–sheath boundary but is necessary for the development of the ligule and auricles. We report that CUL4 also exerts a positive role in tillering and a negative role in spikelet meristem activity. On the other hand, we demonstrate that LAXA plays a negative role in tillering, positively participates in spikelet development and contributes to the control of floral organ number and identity. In this work, we functionally characterized two new NBCL genes in a context of non‐domesticated grass and highlighted original roles for grass NBCL genes that are related to important agronomical traits.  相似文献   
7.
Molecular Biology Reports - Congenital myasthenic syndromes (CMS) are associated with defects in the structure and the function of neuromuscular junctions. These rare disorders can result from...  相似文献   
8.
Compsilura concinnata (Meigen) is one of the most famous, most polyphagous and most widely distributed tachinid flies (Diptera, Tachinidae) in the world. This species is well known as a biocontrol agent of some injurious pests of cultural and wild plants and has been introduced from Europe to the United States to control mainly the gypsy moth. Recently we found three new species very closely resembling C. concinnata from Southeast and East Asia: C. lobata sp. nov. (Japan and Thailand), C. malayana sp. nov. (Malaysia) and C. pauciseta sp. nov. (Japan and Taiwan). Additionally, C. samoaensis Malloch is treated as a junior synonym of C. concinnata based on the examination of the type specimen. The genetic differences in the mitochondrial COI gene data are examined to assess the accuracy of species delimitation of Compsilura. The male postabdominal characters of these species are illustrated. The piercing female postabdomen of C. concinnata is illustrated and compared to those of other members belonging to the Blondelia group including Blondelia Robineau-Desvoidy, Celatoria Coquillett, Eucelatoria Townsend and Vibrissina Rondani.  相似文献   
9.
The crude methanolic extract and subsequent fractions of Teucrium royleanum (Labiatea) were screened for antibacterial and antifungal activities. Against tested pathogens, crude extract and subsequent fractions demonstrated moderate to excellent antibacterial activities. Highest antibacterial activity was displayed by the ethyl acetate fraction against S. typhi (100%), against E.coli (76.7%) and against P. aerugenosa (70.8%) followed by the chloroform fraction against S. typhi (85.7%). Similarly, the crude extract and its subsequent fractions showed mild to excellent activities in the antifungal bioassay with maximum antifungal activity against M. canis (87%) by the chloroform fraction followed by the ethyl acetate (71%) and n-butanol (70%) fractions.  相似文献   
10.
The trimeric envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) mediates virus entry into host cells. CD4 engagement with the gp120 exterior envelope glycoprotein subunit represents the first step during HIV-1 entry. CD4-induced conformational changes in the gp120 inner domain involve three potentially flexible topological layers (layers 1, 2, and 3). Structural rearrangements between layer 1 and layer 2 have been shown to facilitate the transition of the envelope glycoprotein trimer from the unliganded to the CD4-bound state and to stabilize gp120-CD4 interaction. However, our understanding of CD4-induced conformational changes in the gp120 inner domain remains incomplete. Here, we report that a highly conserved element of the gp120 inner domain, layer 3, plays a pivot-like role in these allosteric changes. In the unliganded state, layer 3 modulates the association of gp120 with the Env trimer, probably by influencing the relationship of the gp120 inner and outer domains. Importantly, layer 3 governs the efficiency of the initial gp120 interaction with CD4, a function that can also be fulfilled by filling the Phe43 cavity. This work defines the functional importance of layer 3 and completes a picture detailing the role of the gp120 inner domain in CD4-induced conformational transitions in the HIV-1 Env trimer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号