首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   9篇
  2021年   2篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   12篇
  2012年   12篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2003年   4篇
  2002年   7篇
  2001年   4篇
  1999年   1篇
  1998年   5篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
Molecular systematists need increased access to nuclear genes. Highly conserved, low copy number protein-encoding nuclear genes have attractive features for phylogenetic inference but have heretofore been applied mostly to very ancient divergences. By virtue of their synonymous substitutions, such genes should contain a wealth of information about lower-level taxonomic relationships as well, with the advantage that amino acid conservatism makes both alignment and primer definition straightforward. We tested this postulate for the elongation factor-1 alpha (EF-1 alpha) gene in the noctuid moth subfamily Heliothinae, which has probably diversified since the middle Tertiary. We sequenced 1,240 bp in 18 taxa representing heliothine groupings strongly supported by previous morphological and allozyme studies. The single most parsimonious gene tree and the neighbor-joining tree for all nucleotides show almost complete concordance with the morphological tree. Homoplasy and pairwise divergence levels are low, transition/transversion ratios are high, and phylogenetic information is spread evenly across gene regions. The EF-1 alpha gene and presumably other highly conserved genes hold much promise for phylogenetics of Tertiary age eukaryote groups.   相似文献   
2.
Chick embryo fibroblasts produce two forms of hyaluronidase   总被引:1,自引:0,他引:1       下载免费PDF全文
Cultured chick embryo fibroblasts derived from skin and skeletal muscle exhibit hyaluronidase activity both associated with the cell layer and secreted into the medium. Although both forms of the enzyme have a number of similar characteristics (R.W. Orkin and B.P. Toole, 1980, J. Biol. CHem. 255), they differ in thermal stability at neutral pH and in behavior on ion-exchange chromatography. Both forms of the enzyme are equally stable at acidic pH for long intervals, but the cell-associated hyaluronidase is significantly less stable than the secreted froms at neutral pH and at temperatures more than or equal to 30 degrees C. Neither the presence of proteases nor inhibitors of hyaluronidase appear to be involved in the cell-asspcoated enzyme. Chromatography of the two forms of hyaluronidase on carboxymethyl cellulose reveals that most (60-90 percent) of the secreted form of the enzyme elutes at a lower ionic strength than the cell- associated enzyme. Treatment of the secreted form of hyaluronidase with neuraminidase shifts its elution profile on carboxymethyl cellulose toward that of the cell-associated form, and also decreases its thermal stability at neutral pH. In contrast, treatment of the secreted form of hyaluronidase with alkaline phosphatase has no detectable effect. These data suggest that the secreted hyaluronidase differs from the cellular form in possessing additional sialic acid residues which endow the former with increased stability in the extracellular milieu.  相似文献   
3.
4.
5.
Detection of biological toxins on an active electronic microchip   总被引:3,自引:0,他引:3  
An electric-field-driven assay for fluorescein-labeled staphylococcal enterotoxin B and cholera toxin B was developed on an active electronic microchip. An array of microlocations was transformed into an immunoassay array by electronically biasing electrodes at each microlocation to attract biotinylated capture antibodies. The electric field generated on the array directed the transport, concentration, and binding of biotinylated capture antibodies to streptavidin-coated microlocations. Subsequently, solutions of fluorescein-labeled staphylococcal enterotoxin B and fluorescein-labeled cholera toxin B were electronically addressed to the assay sites by an applied electric field. Each toxin was specifically bound to microlocations containing the appropriate capture antibody with little nonspecific binding to assay sites lacking the appropriate capture antibody. It was possible to detect both toxins from a mixture in a single electronic addressing step; detection was accomplished after a 1-min application of the electric field followed by washing. The ability to perform a rapid, electric field-mediated immunoassay for multiple analytes may provide an advantage over existing approaches.  相似文献   
6.
Ribonuclease inhibitor as an intracellular sentry   总被引:3,自引:0,他引:3       下载免费PDF全文
Onconase® (ONC) is a homolog of RNase A that is in clinical trials as a cancer chemotherapeutic agent. The toxicity of ONC and RNase A variants relies on their ability to evade the cytosolic ribonuclease inhibitor protein (RI) and degrade cellular RNA. We find that these ribonucleases are more toxic for more rapidly growing cells. The enhanced cytotoxicity does not arise from variation in the endogenous level of RI, which is virtually constant. Overproduction of RI diminishes the potency of toxic RNase A variants, but has no effect on the cytotoxicity of ONC. Thus, RI constrains the cytotoxicity of RNase A. These data provide new insights for the development of an optimal ribonuclease-based cancer chemotherapy.  相似文献   
7.
An integrated, stacked microlaboratory for performing automated electric-field-driven immunoassays and DNA hybridization assays was developed. The stacked microlaboratory was fabricated by orderly laminating several different functional layers (all 76 x 76 mm(2)) including a patterned polyimide layer with a flip-chip bonded CMOS chip, a pressure sensitive acrylic adhesive (PSA) layer with a fluidic cutout, an optically transparent polymethyl methacrylate (PMMA) film, a PSA layer with a via, a patterned polyimide layer with a flip-chip bonded silicon chip, a PSA layer with a fluidic cutout, and a glass cover plate layer. Versatility of the stacked microlaboratory was demonstrated by various automated assays. Escherichia coli bacteria and Alexa-labeled protein toxin staphylococcal enterotoxin B (SEB) were detected by electric-field-driven immunoassays on a single chip with a specific-to-nonspecific signal ratios of 4.2:1 and 3.0:1, respectively. Furthermore, by integrating the microlaboratory with a module for strand displacement amplification (SDA), the identification of the Shiga-like toxin gene (SLT1) from E. coli was accomplished within 2.5 h starting from a dielectrophoretic concentration of intact E. coli bacteria and finishing with an electric-field-driven DNA hybridization assay, detected by fluorescently labeled DNA reporter probes. The integrated microlaboratory can be potentially used in a wide range of applications including detection of bacteria and biowarfare agents, and genetic identification.  相似文献   
8.
SIR2 is a key regulator of the aging process in many model organisms. The human ortholog SIRT1 plays a pivotal role in the regulation of cellular differentiation, metabolism, cell cycle, and apoptosis. SIRT1 is an NAD(+)-dependent deacetylase, and its enzymatic activity may be regulated by cellular energy. There is a growing number of known SIRT1 substrates that contain epsilon-acetyl lysine but for which no obvious consensus sequence has been defined. In this study, we developed a novel unbiased method to identify deacetylase sequence specificity using oriented peptide libraries containing acetylated lysine. Following incubation with SIRT1, the subset of deacetylated peptides was selectively captured using a photocleavable N-hydroxysuccinimide (NHS)-biotin linker and streptavidin beads and analyzed using mass spectrometry and Edman degradation. These studies revealed that substrate recognition by SIRT1 does not depend on the amino acid sequence proximate to the acetylated lysine. This result brings us one step closer to understanding how SIRT1 and possibly other protein deacetylases chose their substrate.  相似文献   
9.
Aberrant Skp2 signaling has been implicated as a driving event in tumorigenesis. Although the underlying molecular mechanisms remain elusive, cytoplasmic Skp2 correlates with more aggressive forms of breast and prostate cancers. Here, we report that Skp2 is acetylated by p300 at K68 and K71, which is a process that can be antagonized by the SIRT3 deacetylase. Inactivation of SIRT3 leads to elevated Skp2 acetylation, which leads to increased Skp2 stability through impairment of the Cdh1-mediated proteolysis pathway. As a result, Skp2 oncogenic function is increased, whereby cells expressing an acetylation-mimetic mutant display enhanced cellular proliferation and tumorigenesis in vivo. Moreover, acetylation of Skp2 in the nuclear localization signal (NLS) promotes its cytoplasmic retention, and cytoplasmic Skp2 enhances cellular migration through ubiquitination and destruction of E-cadherin. Thus, our study identifies an acetylation-dependent regulatory mechanism governing Skp2 oncogenic function and provides insight into how cytoplasmic Skp2 controls cellular migration.  相似文献   
10.
New staining techniques continue to be introduced, and older ones continue to be used and improved. Several factors control specificity, selectivity and visibility of the end product in any procedure using dyes, fluorochromes, inorganic reagents or histochemical reactions applied to sections or similar preparations. Local concentration of the tissue target often determines the intensity of the observed color, as does the fine structure within the object being stained, which may facilitate or impede diffusion of dyes and other reagents. Several contributions to affinity control the specificity of staining. These include electrical forces, which result in accumulation of dye ions in regions of oppositely charged tissue polyions. Weaker short-range attractions (hydrogen bonding, van der Waals forces or hydrophobic bonding, depending on the solvent) hold dyes ions and histochemical end products in contact with their macromolecular substrates. Nonionic forces can also increase visibility of stained sites by causing aggregation of dye molecules. Covalent bonds between dye and tissue result in the strongest binding, such as in methods using Schiff's reagent and possibly also some mordant dyes. The rate at which a reagent gains access to or is removed from targets in a section or other specimen affect what is stained, especially when more then one dye is used, together or sequentially. Rate-controlled staining is greatly influenced by the presence and type of embedding medium, such as a resin, that infiltrates the tissue. The rates of chemical reactions are major determinants of outcome in many histochemical techniques. Selective staining of different organelles within living cells is accomplished mainly with fluorochromes and is controlled by mechanisms different from those that apply to fixed tissues. Quantitative structure-activity relations (QSAR) of such reagents can be derived from such molecular properties as hydrophilic-hydrophobic balance, extent of conjugated bond systems, acid-base properties and ionic charge. The QSAR correlates with staining of endoplasmic reticulum, lysosomes, mitochondria, DNA, or the plasma membranes of living cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号