首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   5篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   6篇
  1997年   1篇
  1995年   3篇
  1992年   2篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1983年   4篇
  1982年   2篇
  1981年   6篇
  1979年   5篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有125条查询结果,搜索用时 93 毫秒
1.
2.
Band 3 protein extracted from human erythrocyte membranes by Triton X-100 was recombined with the major classes of phospholipid occurring in the erythrocyte membrane. The resulting vesicle systems were characterized with respect to recoveries, phospholipid composition, protein content and vesicle size as well as capacity and activation energy of sulfate transport. Transport was classified into band-3-specific fluxes and unspecific permeability by inhibitors. Transport numbers (sulfate ions per band 3 per minute) served as a measure of functional recovery after reconstitution. The transport properties of band 3 proved to be insensitive to replacement of phosphatidylcholine by phosphatidylethanolamine, while sphingomyelin and phosphatidylserine gradually inactivated band-3-specific anion transport when present at mole fractions exceeding 30 mol%. The activation energy of transport remained unaltered in spite of the decrease in transport numbers. The results, which are discussed in terms of requirements of band 3 protein function with respect to the fluidity and surface charge of its lipid environment, provide a new piece of evidence that the transport function of band 3 protein depends on the properties of its lipid environment just as the catalytic properties of some other membrane enzymes. The well-established species differences in anion transport (Gruber, W. and Deuticke, B. (1973) J. Membrane Biol. 13, 19–36) may to some extent reflect this lipid dependence.  相似文献   
3.
Development of membrane damage in erythrocytes in the presence of the radical-forming oxidant t-butylhydroperoxide is a well established fact (see, for example, Deuticke et al. (1986) Biochim. Biophys. Acta 854, 169-183). We have now demonstrated that a mere pulse treatment of erythrocytes (5-15 min) with this agent leads to subsequent development of progressive oxidative membrane damage in spite of the absence of exogenous oxidant. Damage comprises the occurrence of ion leakiness and subsequent colloid-osmotic lysis, enhancement of the transbilayer mobility of phospholipid analogues, and lipid peroxidation. There is, however, only very little concomitant oxidation and precipitation of hemoglobin. Defect formation is not due to oxidation of SH-groups nor is it directly related to lipid peroxidation, since it can be suppressed by thiourea without concommitant inhibition of lipid peroxidation. This 'spontaneous' development of membrane damage can be antagonized by metabolic substrates and by desferrioxamine, indicating that lack of protective metabolic resources as well as the presence of catalytic metal (iron) complexes are required for the development of membrane damage. This progressive development of injury in cells only temporarily exposed to an exogenous oxidant may be regarded as a more appropriate model for oxidative membrane damage under pathophysiological conditions in vivo than cells exposed to continuous damage by exogenous oxidants.  相似文献   
4.
5.
Addition of gramicidin in sufficient concentration from dimethylsulfoxide or trifluoroethanol to isolated erythrocyte membranes induces hexagonal HII phase formation for the phospholipids. In contrast, addition from ethanol does not change the overall bilayer organization despite a similar extent of peptide incorporation. The same solvent dependence is observed for the enhancement of transbilayer reorientation of lysophospholipids and unspecific leak formation in intact erythrocytes at lower gramicidin concentrations. These results indicate that the (beta 6.3) conformation of the peptide is essential for all three membrane perturbing effects.  相似文献   
6.
The 70-kilodalton heat shock protein (hsp70) family of molecular chaperones, which contains both stress-inducible and normally abundant constitutive members, is highly conserved across distantly related taxa. Analysis of this protein family in individuals from an outbred population of tropical topminnows, Poeciliopsis gracilis, showed that while constitutive hsp70 family members showed no variation in protein isoforms, inducibly synthesized hsp70 was polymorphic. Several species of Poeciliopsis adapted to desert environments exhibited lower levels of inducible hsp70 polymorphism than the tropical species, but constitutive forms were identical to those in P. gracilis, as they were in the confamilial species Gambusia affinis. These differences suggest that inducible and constitutive members of this family are under different evolutionary constraints and may indicate differences in their function within the cell. Also, northern desert species of Poeciliopsis synthesize a subset of the inducible hsp70 isoforms seen in tropical species. This distribution supports the theory that ancestral tropical fish migrated northward and colonized desert streams; the subsequent decrease in variation of inducible hsp70 may have been due to genetic drift or a consequence of adaptation to the desert environment. Higher levels of variability were found when the 30- kilodalton heat shock protein (hsp30) family was analyzed within different strains of two desert species of Poeciliopsis and also in wild-caught individuals of Gambusia affinis. In both cases the distribution of hsp30 isoform diversity was similar to that seen previously with allozyme polymorphisms.   相似文献   
7.
We have explored the possibilities that cell volume is regulated by the status of microtubule assembly and cyclic AMP metabolism and may be coordinated with shape change. Treatment of J774.2 mouse macrophages with colchicine caused rapid microtubule disassembly and was associated with a striking increase (from 15-20 to more than 90 percent) in the proportion of cells with a large protuberance at one pole. This provided a simple experimental system in which shape changes occurred in virtually an entire cell population in suspension. Parallel changes in cell volume could then be quantified by isotope dilution techniques. We found that the shape change caused by colchicine was accompanied by a decrease in cell volume of approximately 20 percent. Nocodozole, but not lumicolchicine, caused identical changes in both cell shape and cell volume. The volume loss was not due to cell lysis nor to inhibition of pinocytosis. The mechanism of volume loss was also examined. Colchicine induced a small but reproducible increase in activity of the ouabain-sensitive Na(+), K(+)-dependent ATPase. However, inhibition of this enzyme/transport system by ouabain did not change cell volume nor did it block the colchicines-induced decrease in volume. One the other hand, SITS (4’acetamido, 4-isothiocyano 2,2’ disulfonic acid stilbene), an inhibitor of anion transport, inhibited the effects of colchicines, thus suggesting a role for an anion transport system in cell volume regulation. Because colchicine is known to activate adenylate cyclase in several systems and because cell shape changes are often induced by hormones that elevate cyclic AMP, we also examined the effects of cyclic AMP on cell volume. Agents that act to increase syclic AMP (cholera toxin, which activates adenylate cyclase; IBMX, and inhibitor of phosphodiesterase; and dibutyryl cyclic AMP) all caused a volume decrease comparable to that of colchicine. To define the effective metabolic pathway, we studied two mutants of J774.2, one deficient in adenylate cyclase and the other exhibiting markedly reduced activity of cyclic AMP-dependent protein kinase. Cholera toxin did not produce a volume change in either mutant. Cyclic AMP produced a decrease in the cyclase-deficient line comparable to that in wild type, but did not cause a volume change in the kinase- deficient line. This analysis established separate roles for cyclic AMP and colchicine. The volume decrease induced by cyclic AMP requires the action of a cyclic AMP-dependent protein kinase. Colchicine, on the other hand, induced a comparable volume change in both mutants and wild type, and thus does not require the kinase.  相似文献   
8.
In erythrocytes treated with the SH-oxidizing agent, diamide, mixed disulfide bonds between membrane proteins and GSH are formed involving 20% of the membrane SH groups. To study the distribution of these mixed disulfides over the membrane protein fractions, intracellular GSH was labelled biosynthetically with [2-3H]glycine prior to diamide treatment of the cells and the radioactivity of defined membrane peptide fractions determined. Mixed disulfides preferentially occur in the extrinsic protein, spectrin (six SH groups), in addition to the formation of peptide disulfides. Intrinsic proteins are much less reactive: only one SH group of the major intrinsic protein (band 3) reacts with GSH, which accounts for previously observed impossibility to dimerize band 3 via disulfide bonds in intact cells. The labelling method described offers a promising strategy to label and map exposed endofacial SH groups of membrane proteins with a physiological, impermeable marker, GSH.In ghosts treated with diamide and GSH the number of mixed disulfides formed is greater than in erythrocytes. Polymerization of spectrin via intermolecular disulfide bridges is suppressed, while intramolecular disulfides are still formed, providing a means for the analysis of spectrin structure.The diamide-induced mixed membrane-GSH disulfides are readily reduced by GSH. This suggests, that GSH may also be able to reduce mixed disulfides formed in the erythrocyte membrane under oxidative stress in vivo. The reversible formation of mixed disulfides may serve to protect sensitive membrane structures against irreversible oxidative damage.  相似文献   
9.
After incubation of human erythrocytes at 37 degrees C in the absence of glucose (A) for 24 h, (B) for 4 h with 8 mM hexanol or (C) for 3 h with SH reagents, phosphatidylethanolamine becomes partly susceptible to hydrolysis by phospholipase A2 from Naja naja. The presence of glucose during the pretreatments suppresses this effect, except in the case of SH reagents that inhibit glycolysis. After incubation with tetrathionate, up to 45% of the phosphatidylethanolamine is degraded by the enzyme, an amount considerably in excess of the 20% attacked in fresh erythrocytes. Pancreatic phospholipase A2, an enzyme unable to hydrolyse the phospholipids of intact erythrocytes, partially degrades phosphatidylcholine and phosphatidylethanolamine of erythrocytes pretreated with hexanol or SH reagents. Reagents capable of oxidizing SH groups to disulfides (tetrathionate, o-iodosobenzoate and hydroquinone) even render susceptible to pancreatic phospholipase A2 phosphatidylserine, a phospholipid supposed to be entirely located in the inner lipid layer of the membrane. Alkylating or acylating SH reagents have no such effect. It is postulated that disulfide bond formation between membrane protein SH groups leads to an alteration in protein-phospholipid interactions and consequently induces a reorientation of phospholipids between the inner and the outer membrane lipid layer.  相似文献   
10.
Phosphatidylethanolamine in freshly drawn human erythrocytes is trinitrophenylated by 2,4,6-trinitrobenzene sulfonic acid only slowly and to a maximum of 32%. After different preincubation procedures at 37 degrees C in saline media in the absence of glucose (24 h without additive, 1-5 h with 8 mM hexanol or 1-4 h with the SH reagent, 5 mM tetrathionate) the rate of subsequent trinitrophenylation of phosphatidylethanolamine, in the absence of the additives, is greatly enhanced and the amount of phospholipid reacting increased. Glucose or inosine prevent these effects, inhibitors of glycosis abolish this protection. The results indicate that in fresh as well as in glycolysing incubated erythrocytes phosphatidylethanolamine in the outer layer of the membrane lipid is shielded by a protein. Conformational changes of this protein induced by metabolic starvation and perturbing agents expose the phospholipid head group to 2, 4, 6-trinitrobenzene sulfonic acid. In addition, a "flip-flop" of phosphatidylethanolamine from the inner to the outer layer may also contribute to the effects observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号