首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   33篇
  国内免费   1篇
  2023年   3篇
  2022年   9篇
  2021年   14篇
  2020年   9篇
  2019年   28篇
  2018年   31篇
  2017年   11篇
  2016年   15篇
  2015年   10篇
  2014年   11篇
  2013年   11篇
  2012年   17篇
  2011年   22篇
  2010年   5篇
  2009年   3篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
1.
2.
3.
Beneficial microbes have a positive impact on the productivity and fitness of the host plant. A better understanding of the biological impacts and underlying mechanisms by which the host derives these benefits will help to address concerns around global food production and security. The recent development of omics‐based technologies has broadened our understanding of the molecular aspects of beneficial plant–microbe symbiosis. Specifically, proteomics has led to the identification and characterization of several novel symbiosis‐specific and symbiosis‐related proteins and post‐translational modifications that play a critical role in mediating symbiotic plant–microbe interactions and have helped assess the underlying molecular aspects of the symbiotic relationship. Integration of proteomic data with other “omics” data can provide valuable information to assess hypotheses regarding the underlying mechanism of symbiosis and help define the factors affecting the outcome of symbiosis. Herein, an update is provided on the current and potential applications of symbiosis‐based “omic” approaches to dissect different aspects of symbiotic plant interactions. The application of proteomics, metaproteomics, and secretomics as enabling approaches for the functional analysis of plant‐associated microbial communities is also discussed.  相似文献   
4.
Staphylokinase (SAK) is a promising thrombolytic agent for the treatment of patients suffering from blood-clotting disorders. To increase the potency of SAK and to minimize vessel reocclusion, a new construct bearing SAK motif fused to tsetse thrombin inhibitor (TTI) via a 20-amino acid linker with 2 RGD (2 × arginine-glycine-aspartic acid inhibiting platelet aggregation via attachment to integrin receptors of platelet) was codon optimized and expressed comparatively in Pichia pastoris GS115 as a Mut+ strain and KM71H as a Muts strain. Fusion protein was optimized in terms of best expression condition and fibrinolytic activity and compared with the rSAK. Expression level of the designed construct reached up to 175 mg/L of the culture medium after 72-hr stimulation with 2.5% methanol and remained steady for 3–4 days. The highest expression was obtained at the range of 2–3% methanol. The SAK-2RGD-TT (relative activity >82%) was more active at 25–37 °C than rSAK (relative activity of 93%). Further, it showed relative activity >80% at pH ranges of 7–9. Western blot analysis showed two bands of nearly 27 and 24 kDa at ratio of 5 to 3, respectively. The specific fibrinolytic activity of the SAK-2RGD-TTI was measured as 8,269 U/mg, and 19,616 U/mg for the nonpurified and purified proteins, respectively. Deglycosylation by using tunicamycin in culture medium resulted in higher fibrinolytic activity of SAK-2RGD-TTI (2.2 fold). Consequently, compared to the rSAK, at the same equimolar proportion, addition of RGD and TTI fragments could increase fibrinolytic activity. Also, P. pastoris can be considered as an efficient host for overexpression of the soluble SAK-2RGD-TTI with high activity without requiring a complicated purification procedure.  相似文献   
5.
Human influenza A viruses (IAVs) cause global pandemics and epidemics, which remains a nonignorable serious concern for public health worldwide. To combat the surge of viral outbreaks, new treatments are urgently needed. Here, we design a new vaccine based on virus-like particles (VLPs) and show how intranasal administration of this vaccine triggers protective immunity, which can be exploited for the development of new therapies. H1N1 VLPs were produced in baculovirus vectors and were injected into BALB/c mice by the intramuscular (IM) or intranasal (IN) route. We found that there were significantly higher inflammatory cell and lymphocyte concentrations in bronchoalveolar lavage samples and the lungs of IN immunized mice; however, the IM group had little signs of inflammatory responses. On the basis of our results, immunization with H1N1 influenza VLP elicited a strong T cell immunity in BALB/c mice. Despite T cell immunity amplification after both IN and IM vaccination methods in mice, IN-induced T cell responses were significantly more intense than IM-induced responses, and this was likely related to an increased number of both CD11bhigh and CD103+ dendritic cells in mice lungs after IN administration of VLP. Furthermore, evaluation of interleukin-4 and interferon gamma cytokines along with several chemokine receptors showed that VLP vaccination via IN and IM routes leads to a greater CD4+ Th1 and Th2 response, respectively. Our findings indicated that VLPs represent a potential strategy for the development of an effective influenza vaccine; however, employing relevant routes for vaccination can be another important part of the universal influenza vaccine puzzle.  相似文献   
6.
7.
High-density lipoprotein (HDL) function rather than level may better predict cardiovascular disease (CVD). However, the contribution of the impaired antioxidant function of HDL that is associated with increased HDL lipid peroxidation (HDLox) to the development of clinical CVD remains unclear. We have investigated the association between serum HDLox with incident CVD outcomes in Mashhad cohort. Three-hundred and thirty individuals who had a median follow-up period of 7 years were recruited as part of the cohort. The primary end point was cardiovascular event, including myocardial infarction, stable angina, unstable angina, or coronary revascularization. In both univariate/multivariate analyses adjusted for traditional CVD risk factors, HDLox was an independent risk factor for CVD (odds ratio, 1.62; 95% confidence interval, 1.41–1.86; p < 0.001). For every increase in HDLox by 0.1 unit, there was an increase in CVD risk by 1.62-fold. In an adjusted analysis, there was a >2.5-fold increase in cardiovascular risk in individuals with HDLox higher than cutoff point of 1.06 compared to those with lower scores, suggesting HDLox > 1.06 is related to the impaired HDL oxidant function and in turn exposed to elevated risk of CVD outcomes (hazard ratio, 2.72; 95% CI, 1.88–3.94). Higher HDLox is a surrogate measure of reduced HDL antioxidant function that positively associated with cardiovascular events in a population-based cohort.  相似文献   
8.
Recent advances have put fundamental focus on the application of copper (II) (Cu [II]) complexes as agents for fighting against cancer. To determine whether [Cu(L)(2imi)] complex as a novel Cu complex can induce apoptosis in HepG2 as cancerous cells and L929 as normal cells via extrinsic or intrinsic apoptotic pathways, both cell lines were treated for 24 and 48 hours at IC50 concentrations of [Cu(L)(2imi)] complex. Then, the expression of some apoptosis-related genes including p53, caspase-8, bcl-2, and bax were assayed by real-time polymerase chain reaction. The [Cu(L)(2imi)] complex seems to inhibit the expression of bcl-2 in complex-treated HepG2 cancerous cells following the 24- and 48-hour treatment. The complex upregulated the p53, bax, and caspase-8 genes, therefore treatment of HepG2 cancerous cells with [Cu(L)(2imi)] complex induces programmed cell death via the upregulation of relative bax/bcl-2 ratio. Finally, this copper complex triggered apoptosis in HepG2 cells via both intrinsic and extrinsic pathway, whereas treatment of normal L929 cells with this complex induce apoptosis only via intrinsic pathway with the upregulation of relative bax/bcl-2 ratio and does not affect the expression level of caspase-8 gene and does not trigger the extrinsic pathway. Finally, these results obtained from present study confirm the role of a novel Cu complex on the induction of apoptosis process in HepG2 and L929 cells by overexpression of bax, inhibition of bcl-2 and increase of the relative bax/bcl-2 ratio. These results support that the [Cu(L)(2imi)] complex is able to induce apoptosis in cancerous cells, therefore, it has a potential for development as a novel anticancer drug.  相似文献   
9.
Agarose based immobilized metal affinity chromatography (IMAC) columns loaded with copper (II) were evaluated for the selection of histidine-containing peptides in comparative proteomics. Recovery, binding specificity, and reproducibility were investigated with model proteins. Cu(II)-IMAC was found to be highly selective for histidine containing peptides; moreover, a low degree of nonspecific selection was observed. Acylation of the amino-terminus of peptides with either succinic anhydride, N-acetoxysuccinamide, or [3-(2,5)-dioxopyrrolidin-1-yloxycarbonyl)-propyl]-trimethylammonium (quaternary amine) reduced the number of histidine-containing peptides bound by the Cu(II)-IMAC columns. This provides an additional possibility for sample simplification in proteomic applications. The number of acylated peptides selected decreased in the order of quaternary amine > N-acetoxysuccinamide > succinic anhydride derivatization. Although the selection of N-terminally derivatized peptides is biased toward peptides that contain more than one histidine, it is not yet possible to predict selectivity.  相似文献   
10.
Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label‐free quantitative shotgun proteomic analysis was performed. A total of 2042 non‐redundant proteins were identified from the five temperature points. Fifty‐five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold‐responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 ( http://proteomecentral.proteomexchange.org/dataset/PXD000977 ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号