首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   0篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1959年   1篇
  1958年   1篇
  1957年   3篇
  1952年   1篇
  1924年   1篇
排序方式: 共有59条查询结果,搜索用时 312 毫秒
1.
Ethylene production by primary roots of 72–h-old intact seedlings of Zea mays L. cv. LG11 was studied under ambient and sub-ambient oxygen partial pressures (pO2) using a gas flow-through system linked to a photoacoustic laser detector. Despite precautions to minimize physical perturbation to seedlings while setting-up, ethylene production in air was faster during the first 6h than later, in association with a small temporary swelling of the roots. When roots were switched from air (20–8kPa O2) to 3 or 5kPa O2 after 6h, ethylene production increased within 2—3 h. When, the roots were returned to air 16 h later, ethylene production decreased within 2—3 h. The presence of 10kPa CO2 did not interfere with the effect of 3kPa O2. Transferring roots from air to 12–5kPa did not change ethylene production, while a reduction to 1 kPa O2 induced a small increase. The extra ethylene formed in 3 and 5 kPa O2 was associated with plagiotropism, swelling, root hair production, and after 72 h, increased amounts of intercellular space (aerenchyma) in the root cortex. Root extension was also slowed down, but the pattern of response to oxygen shortage did not always match that of ethylene production. On return to air, subsequent growth patterns became normal within a few hours. In the complete absence of oxygen, no ethylene production was detected, even when anaerobic roots were returned to air after 16 h.  相似文献   
2.
Coelenterate Neuropeptides: Structure, Action and Biosynthesis   总被引:3,自引:0,他引:3  
Evolutionary "old" nervous systems such as those of coelenteratesare peptidergic: Using various radioimmunoassays we have nowisolated 13 novel neuropeptides from sea anemones and severalothers from hydrozoan polyps and medusae. These peptides areall structurally related and contain the C-terminal sequenceArg-X-NH2 or Lys-X-NH2, where X is Ala, Asn, Ile, Phe, Pro orTrp. Three neuropeptides have a novel N-terminal L-3-phenyllactylresidue, which protects against degradation by nonspecific aminopeptidases.The neuropeptides from sea anemones are produced by differentsets of neurones and have excitatory or inhibitory actions onisolated muscle preparations, suggesting that they are neurotransmittersor neuromodulators. We have also cloned the precursor proteinfor the sea-anemone neuropeptide Antho-RFamide (<Glu-Gly-Arg-Phe-NH2).In Calliactis parasitica this precursor harbours 19 copies ofimmature Antho-RFamide (Gln-Gly-Arg-Phe-Gly) together with 7other, putative neuropeptide sequences. The precursor of Anthopleuraelegantissima contains 14 copies of Antho-RFamide and 19 other,putative neuropeptides. This shows that the biosynthetic machineryfor neuropeptides in coelenterates, the lowest animal grouphaving a nervous system, is already very efficient and similarto that of higher invertebrates, such as molluscs and insects,and vertebrates.  相似文献   
3.
Sculpture of dermal bones and their vascularization in basal tetrapods are closely connected. Ontogenetic data suggest that the large vessels that coursed to the superficial bone surface induced the formation of sculptural ridges and tubercles around their openings. Imprints show that the vessels continued on the bone surface and coursed within furrows or pits, where they were protected by the sculpture from mechanical damage. Dermal bone histology indicates a consolidation of the integument in basal tetrapods by strong, mineralized Sharpey's fibres in the sculptural ridges and tubercles, and by the presence of metaplastic tissue in several taxa. Because of the tight integration of bone and dermis, the large vessels were not able to spread over the sculptural elements, but instead had to pass interosseously. The diverse sculptural morphologies depend on the variation in height and width of the ‘nodal points’ and their connecting ridges, and in the size and shape of the enclosed cells and furrows. A principal component analysis (PCA) and discriminant function analysis (DFA) of 47 basal tetrapod taxa with 12 discrete characters shows that dermal sculpture is suited for distinguishing some main basal tetrapod lineages. Taxa that are interpreted as being largely aquatic have generally a more regular sculpture than presumably terrestrial ones. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 160 , 302–340.  相似文献   
4.
5.
6.
Four dorvilleid species new to science are described from intertidal and subtidal sandy sediments. For three of them new genera are erected: Coralliotrocha natans gen. et sp.n., Microdorvillea otagensis gen. et sp.n. and Pusillotrocha Åkessoni gen. et sp.n. One species represents the first record of the genus Pettiboneia from Australia, P. australiensis sp.n. Ophryotrocha minuta Levi, 1954 redescribed from Helgoland is transferred to a different genus, Arenotrocha gen.n. The present taxa belong to a morphological series of species with an increasing degree of neoteny in the family Dorvilleidae.  相似文献   
7.
8.
Lecocarpus pinnatifidus is an endemic member of the Asteraceae occurring on only one island in the Galápagos archipelago. The capitula are large with female ray florets and male disc florets. They are self-compatible but this study suggests fruit set is pollen limited. Visits from Xylocopa darwini and other larger insect pollinators are rare, and small insects seem to be the main pollinators. Small insects carry few pollen grains and most likely mediate self-pollinations. Self-compatibility and seed set after selfing are the most common reproductive strategy in the Galápagos Islands and L. pinnatifidus seemingly fits well into this group.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 171–180.  相似文献   
9.
1. In this study, we examine how a 7‐year period of expanding submerged stonewort (Chara spp.) vegetation during a shift from turbid to clear water in a shallow lake influenced individual growth and population size structure of perch (Perca fluviatilis). We expected that a shift from phytoplankton to macrophyte dominance and clear water would improve feeding conditions for perch during a critical benthivorous ontogenetic stage, and enhance the recruitment of piscivorous perch. 2. Growth analysis based on opercula showed that growth during the second year of life was significantly higher in years with abundant vegetation than in years with turbid water and sparse vegetation. Growth was not affected during the first, third and fourth year of life. Stable isotope analyses on opercula from 2‐year‐old perch showed that the increase in growth coincided with a change in carbon source in the diet. Stable nitrogen ratio did not change, indicating that the increased growth was not an effect of any change in trophic position. 3. Following the expansion of submerged vegetation, perch size range and abundance of piscivorous perch increased in central, unvegetated areas of the lake. In stands of stoneworts, however, mainly benthivorous perch were caught, and size range did not change with time. 4. Our findings provide empirical support for the notion that establishment of submerged vegetation may lead to increased recruitment of piscivorous perch, because of improved competitive conditions for perch during the benthivorous stage. This is likely to constitute a benthic‐pelagic feedback coupling, in which submerged vegetation and clear water promote the recruitment of piscivorous perch, which, in turn, may increase water clarity through top‐down effects in the pelagic.  相似文献   
10.
Plants of Rumex thyrsiflorus Fingerh., R. crispus L. and R.maritimus L., which are zoned along a gradient of elevationin a river foreland ecosystem, and differ in their flood-tolerance,were subjected to different flooding levels. Under conditionsof soil flooding, the growth rates of the flood-tolerant R.crispus and R. maritimus were as high as under drained conditions,but that of the flood-intolerant R. thyrsiflorus was halved.Upon submergence, the low elevation species R. maritimus showedrapid shoot elongation; when elongation resulted in a protrusionof leaves above the water surface, the plants survived. Alternatively,underwater photosynthesis also led to a 100% survival of submergedR. maritimus plants, provided that enough inorganic carbon wasmade available in the water. This could be attributed in partto the use of photosynthetically-derived oxygen for root respiration;in a hydroculture experiment, with 5.0 mM CO2 in the water inthe shoot environment, photosynthetically-derived oxygen contributedmore than 50% to root oxygen consumption at low oxygen concentrationsin the root environment. The intermediately elevated species R. crispus appeared to bemuch more tolerant towards conditions of prolonged total submergence:older plants survived eight weeks submergence in the dark. Thisresponse was explicable in terms of a dormancy-strategy, whichis characterized by a slow consumption of carbohydrates storedin the tap-root. The differential responses of R. maritimusand R. crispus to total submergence reveal the limitations offlood-tolerance and reflect the different life-histories ofthe species. Key words: Photosynthesis, Rumex, submergence, carbohydrates, growth rate, shoot elongation  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号