首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2004年   1篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1958年   1篇
  1956年   1篇
  1950年   1篇
  1947年   1篇
排序方式: 共有27条查询结果,搜索用时 31 毫秒
1.
Using modified compartmental analysis the unidirectional fluxesof abscisic acid (ABA) and their cytoplasmic and vacuolar contentsin 3H-ABA preloaded barley root segments (Hordeum distichoncv. Aura) have been studied. When root segments were stressedosmotically with sorbitol (osmotic potential of the media 0= 0.2 MPa) cytoplasmic and vacuolar contents of ABA were enhanced.Under increased stress cytoplasmic and vacuolar contents weremuch lower than in the unstressed controls. ABA fluxes werevery sensitive to osmotic stress and ABA transport from thecytoplasm of the xylem parenchyma to the xylem vessels (cx)was rapidly inhibited. The cultivar Aura has higher cytoplasmicand vacuolar ABA contents than the barley cultivar Kocherperle.This correlates well with the higher stress tolerance of theAura cultivar. Key words: Abscisic acid, Compartmentation, Osmotic stress  相似文献   
2.
The Permeability of the Guard Cell Plasma Membrane and Tonoplast   总被引:4,自引:0,他引:4  
Uptake experiments and efflux compartmental analysis of planthormones, osmotica and toxins using ‘isolated’ guardcells of Valerianella locusta and guard cell protoplasts (GCP)of Vicia faba were performed in order to study the permeabilityproperties of guard cell plasma membrane and tonoplast. Theplasma membrane of guard cells exhibits a higher permeabilitythan plasma membranes of mesophyll cells for most solutes investigated.The permeability coefficients (Ps calculated for the guard cellplasma membranes are also significantly higher than the Ps valuesfor the guard cell tonoplast. This applies also for protonatedABA. We suppose that the high permeability for ABAH could bepart of the target cell properties. A Collander analysis demonstratesa linear correlation between Ps, values and the ratio Kr/Mr1,5for both plasma membrane (r = 0.87) and for the tonoplast (r=0.93). Because of deviations from the observed correlations,the permeation of some solutes (ABA, GA, IAA through the tonoplast;methylamine through the plasma membrane) seems to be facilitatedby an additional transport mechanism. The Collander analysisof the plasma membrane of GCP shows very similar results tothe analysis of the plasma membrane of ‘isolated’guard cells, indicating that isolation of protoplasts does notalter the permeability of the guard cell plasma membrane. Key words: Permeability coefficient, guard cells, plasma membrane, tonoplast  相似文献   
3.
HARTUNG  W.; FUNFER  C. 《Annals of botany》1981,47(3):371-375
Abscisic acid (ABA) applied to the decapitated second internodeof runner bean plants enhanced outgrowth of lateral buds onlywhen internode stumps were no longer elongating. Applied toelongating internodes of slightly younger plants, ABA causesinhibition of bud outgrowth. Together with 10–4 M indol-3-ylacetic acid (IAA), ABA stimulated internode elongation and interactedadditively in the inhibition of bud outgrowth. A mixture of10–5 M ABA and 10–6 M gibberellic acid (GA3 ) causedsimilar effects on internode growth as IAA + ABA, but was mutuallyantagonistic in effect on growth of the lateral buds. Abscisic acid, apical dominance, gibberellic acid, indol-3yl acetic acid, Phaseolus coccineus, bean  相似文献   
4.
5.
Two distinct morphological forms characterize the ontogeny of many epiphytic bromeliads. Smaller plants exhibit an atmospheric habit, while larger plants form water‐impounding tanks. The study of the functional significance of heteroblasty in epiphytes is severely hampered by considerable size‐related variation in morphological, anatomical and physiological parameters. To overcome this problem, plants of varying size of both atmospheric and tank form were included in the present study with Vriesea sanguinolenta. The results show that virtually all morphological, anatomical and physiological characteristics vary during ontogeny, but changes were rarely directly related to the step change in gross morphology. Changes were either: (1) gradual from smallest atmospheric to small tank (e.g. leaf divergence angles, reduction in photosystem II efficiency during drought, speed of recovery after drought); (2) there was no change between atmospheric and small tank, but a gradual or step change within the tank form (stomatal density, relationship of leaf N and specific leaf area); or (3) developmental patterns were more complicated with decreases and increases during ontogeny (photosynthetic capacity, carbon isotope ratios, abscisic acid levels during drought). Although the comparisons between ontogenetic phases were always confounded by size differences, a hypothetical small tank plant is expected to suffer higher water loss than a real atmospheric, whereas a hypothetical, large atmospheric plant would show reduced access to resources, such as nutrients, in comparison with the real tank. The present results are consistent with the notion of heteroblasty as an adaptation of early ontogenetic stages to drought, but highlight that size‐related variation greatly modifies any difference directly associated with the step change from atmospheric to tank.  相似文献   
6.
The inhibitory effects of PEG on whole-plant growth can exceed the effects of other osmolytes such as NaCI, and this has been ascribed to toxic contaminants, or to reduced oxygen availability in PEG solutions. We investigated another possibility, namely that PEG has an additional inhibitory effect on root water transport which in turn affects leaf development. The effects on first-leaf growth of applications of PEG 6000 or isoosmotic NaCI to the roots were determined using hydroponically grown maize (Zea mays L.) seedlings. Leaf growth rates were inhibited within minutes of PEG application to the roots and remained inhibited for days. The inhibitory effects on growth of NaCI, and also of KCl and mannitol, were much smaller. The comparative effects of NaCI and PEG on root water transport were determined by assaying pressurized flow through excised roots. PEG induced a 7-fold greater inhibition of flow through live roots than NaCI. Killing of the roots by heat treatment, to reduce cell membrane resistances to solute penetration, nearly doubled the flow rate for roots in NaCI, but not for roots in PEG. We suggest that the greater viscosity of PEG solutions, as compared with NaCI, may be a primary factor contributing to the additional inhibition of water flow through live and killed roots. PEG did not have additional effects on leaf turgor but had a 3 times greater inhibitory effect than NaCI on the irreversible extensibility of the leaves and induced 16 times more leaf accumulation of the growth inhibitory stress hormone abscisic acid (ABA). We conclude that greater inhibition of root water transport by PEG 6000, as compared with NaCI, leads to additional reductions in extensibility, additional ABA accumulation, and a greater inhibition of leaf growth.  相似文献   
7.
Following a precultivation with pedospheric nitrogen nutrition, Ricinus plants were supplied with nitrogen solely by spraying nitrate or ammonium solution onto the leaves during the experimental period. The chemical composition of tissues, xylem and phloem exudates was determined and on the basis of the previously determined nitrogen flows (Peuke et al., New Phytologist (1998), 138 , 657–687) the flows of potassium, sodium, magnesium, calcium, chloride and ABA were modelled. These data, which permit quantification of net-uptake, transport in xylem and phloem, and utilization in shoot and root, were compared with results obtained in plants with pedospherically-supplied nitrate or ammonium and data in the literature. Although the overall effects on the chemical composition of supplying ammonium to the leaves were not as pronounced as in pedospherically supplied plants, there were some typical responses of plants fed with ammonium (ammonium syndrome). In particular, in ammonium-sprayed plants uptake and transport of magnesium decreased and chloride uptake was increased compared with nitrate-sprayed plants. Furthermore, acropetal ABA transport in the xylem in ammonium-sprayed Ricinus was threefold higher than in nitrate-sprayed plants. Additionally, concentrations of anions were more or less increased in tissues, particularly in the roots, and transport fluids. The overall signal from ammonium-sprayed leaves without a direct effect of ammonium ions on uptake and transport systems in the root is discussed.  相似文献   
8.
9.
Plants of Lupinus albus were grown for 51 d under control (1.1mol m–3 NaCl) and saline (40 mol m–3 NaCl) conditions.Plants were harvested and changes of carbon, nitrogen and abscisicacid (ABA) contents of individual organs were determined 41d and 51 d after germination. In the period between the twoharvests xylem and phloem saps were collected and respirationand photosynthesis of individual organs were measured. Usingflows of carbon, C/ABA ratios and increments of ABA flows ofABA in phloem and xylem and rates of biosynthesis and degradationof ABA were calculated. Both under control and saline conditionsnet biosynthesis occurred in the root, the basal strata of leavesand in the inflorescence. Metabolic degradation of ABA tookplace in the stem internodes and apical leaf strata. Salt stress increased xylem transport of ABA up to 10-fold andphloem transport to the root up to 5-fold relative to that ofthe controls. A considerable amount of ABA in the xylem saporiginated from biosynthesis in the roots, i.e. 55% in salt-treatedand smaller than 28% in control plants. The remaining part ofABA in the xylem sap originated from the shoot: it was translocatedin the phloem from fully differentiated leaves towards the rootand from there it was recirculated back to the aerial partsof the plant. The data suggest that ABA may serve as a hormonalstress signal from the root system. Key words: Lupinus albus, salt stress, abscisic acid, long distance transport  相似文献   
10.
When 14C-labelled abscisic acid ([14C]ABA) was supplied to isolated protoplasts of the barley leaf at pH 6, initial rates of metabolism were about five times higher in epidermal cell protoplasts than in mesophyll cell protoplasts if equal cytosolic volumes were considered. In spite of the fact that epidermal cells make up only about 35% of the total water space in barley leaves, and despite the small cytosolic volume of these cells, in intact leaves all epidermal cells would thus metabolize half as much ABA per unit time as the mesophyll cells (0–27 and 0–51 mmol h?1 m?3 leaf water). Therefore, under these conditions epidermal cells seem to be a stronger sink than mesophyll cells for ABA that arrives via the transpiration stream. However, at an apoplastic pH of 7–25, which occurs in stressed leaves, the proportion of total metabolized ABA would be much smaller in epidermal than in mesophyll cells (0–029 and 0–204 mmolh?l m?3 leaf water). Our results indicate that under conditions of slightly alkaline apoplastic pH the epidermis may serve as the main source for fast stress-dependent ABA redistribution into the guard cell apoplast. This is partly the result of ABA transport across the epidermal tonoplast, which is dependent on the apoplastic pH and possibly on the cytosolic calcium concentration. The cuticle seems to be of no particular importance in stress-induced apoplastic ABA shifts and cannot be regarded as a significant sink for high ABA concentrations under stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号