首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   341篇
  免费   20篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   8篇
  2017年   2篇
  2016年   5篇
  2015年   10篇
  2014年   15篇
  2013年   24篇
  2012年   25篇
  2011年   16篇
  2010年   14篇
  2009年   22篇
  2008年   19篇
  2007年   20篇
  2006年   19篇
  2005年   14篇
  2004年   22篇
  2003年   28篇
  2002年   19篇
  2001年   15篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1995年   5篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有361条查询结果,搜索用时 625 毫秒
1.
The pannexin family of channel-forming proteins is composed of 3 distinct but related members called Panx1, Panx2, and Panx3. Pannexins have been implicated in many physiological processes as well as pathological conditions, primarily through their function as ATP release channels. However, it is currently unclear if all pannexins are subject to similar or different post-translational modifications as most studies have focused primarily on Panx1. Using in vitro biochemical assays performed on ectopically expressed pannexins in HEK-293T cells, we confirmed that all 3 pannexins are N-glycosylated to different degrees, but they are not modified by sialylation or O-linked glycosylation in a manner that changes their apparent molecular weight. Using cell-free caspase assays, we also discovered that similar to Panx1, the C-terminus of Panx2 is a substrate for caspase cleavage. Panx3, on the other hand, is not subject to caspase digestion but an in vitro biotin switch assay revealed that it was S-nitrosylated by nitric oxide donors. Taken together, our findings uncover novel and diverse pannexin post-translational modifications suggesting that they may be differentially regulated for distinct or overlapping cellular and physiological functions.  相似文献   
2.
3.
Summary The percentage and absolute number of lymphocytes and Leu 7+ cells were significantly lower in HD even in active stages. There was no significant difference in the percentage of LGL between the three groups (control, active HD, inactive HD), however, because of differences in counts of lymphocytes the absolute number of LGL was significantly lower in HD even in the active group than that in healthy controls. The absolute count of LGL and Leu 7+ cells in patients in remission was significantly higher than that in active HD. Natural cytotoxicity against K-562 cells was also significantly lower in active patients in comparison with controls, while the percentage of cytotoxicity was slightly but not significantly higher in patients in remission than that in the active group. A positive correlation was observed between all the three examined parameters both in controls and in patients with active and inactive HD.  相似文献   
4.
Using both chromosomal in situ hybridization and molecular techniques, we report the genetic localization of the gene coding for the alpha 1 subunit of the skeletal slow Ca2+ current channel/DHP receptor gene (Cchl1a3) on human Chromosome (Chr) 1 (1q31–1q32 region) and on mouse Chr 1 region (F-G). On the basis of single-strand conformation polymorphism (SSCP-PCR) analysis in an interspecific backcross, we have determined that the Cchl1a3=mdg (muscular dysgenesis) locus is very closely linked to the myogenin (Myog) locus.  相似文献   
5.
Mutant rat trypsin Asp189Ser was prepared and complexed with highly purified human α1-proteinase inhibitor. The complex formed was purified to homogeneity and studied by N-terminal amino acid sequence analysis and limited proteolysis with bovine trypsin. As compared to uncomplexed mutant trypsin, the mutant enzyme complexed with α1-proteinase inhibitor showed a highly increased susceptibility to enzymatic digestion. The peptide bond selectively attacked by bovine trypsin was identified as the Arg117-Val118 one of trypsin. The structural and mechanistic relevance of this observation to serine proteinase-substrate and serine proteinase-serpin reactions are discussed.  相似文献   
6.
The effects of high oxygen pressure on pyruvate dehydrogenase (pyruvate: lipoate oxidoreductase (decarboxylating and acceptor-acylating), EC 1.2.4.1) activity, tissue concentration of ATP, and CO2 production from glucose were studied in rat brain cortical slices. The increase in pyruvate dehydrogenase activity and the lowering of cellular ATP, occurring during potassium-induced depolarization at 1 atm of oxygen, were reversed by increasing the oxygen pressure to 5 atm. When brain slices were incubated at 1 atm oxygen with [U-14C]glucose, a high potassium medium approximately doubled the production of 14CO2. Oxygen at 5 atm abolished this potassium-dependent increase in 14CO2 production with no significant effect on glucose oxidation in normal Krebs-Ringer phosphate medium. Adding 4 atm helium to 1 atm oxygen did not interfere with the ability of potassium ions to activate pyruvate dehydrogenase, lower ATP, or increase glucose oxidation. The results show that toxic effects of hyperbaric oxygen, not manifest in “resting” tissue, may be revealed during stress such as potassium depolarization. The site of the toxic effects of oxygen is probably the cell membrane where excess oxygen appears to interfere with the action of the sodium pump, calcium transport or other processes stimulated by increased concentrations of extracellular potassium.  相似文献   
7.
8.
Abandonment of the name eloxanthin is proposed. The principal carotenoids in various species of Elodea were (3R, 3′R, 6′R)-lutein (β,ε-carotene-3, 3′-diol) and β, β-carotene. The minor pigments were neoxanthin-X (5′, 6′-epoxy-6, 7-didehydro-5, 6, 5′, 6′-tetrahydro-β, β-carotene-3, 5, 3′-triol), 9′-cis-neoxanthin- X, 9- and 13-cis-violaxanthin (5, 6, 5′, 6′-diepoxy-5, 6, 5′, 6′-tetrahydro-β, β-carotene-3, 3′-diol), antheraxanthin (5, 6-epoxy-5, 6-dihydro-β, β-carotene-3, 3′-diol), neolutein A (13- or 13′-cis-lutein) and neolutein B (9- or 9′-cis-lutein). All attempts to isolate eloxanthin failed.  相似文献   
9.
Adaptation-related aftereffects (AEs) show how face perception can be altered by recent perceptual experiences. Along with contrastive behavioural biases, modulations of the early event-related potentials (ERPs) were typically reported on categorical levels. Nevertheless, the role of the adaptor stimulus per se for face identity-specific AEs is not completely understood and was therefore investigated in the present study. Participants were adapted to faces (S1s) varying systematically on a morphing continuum between pairs of famous identities (identities A and B), or to Fourier phase-randomized faces, and had to match the subsequently presented ambiguous faces (S2s; 50/50% identity A/B) to one of the respective original faces. We found that S1s identical with or near to the original identities led to strong contrastive biases with more identity B responses following A adaptation and vice versa. In addition, the closer S1s were to the 50/50% S2 on the morphing continuum, the smaller the magnitude of the AE was. The relation between S1s and AE was, however, not linear. Additionally, stronger AEs were accompanied by faster reaction times. Analyses of the simultaneously recorded ERPs revealed categorical adaptation effects starting at 100 ms post-stimulus onset, that were most pronounced at around 125–240 ms for occipito-temporal sites over both hemispheres. S1-specific amplitude modulations were found at around 300–400 ms. Response-specific analyses of ERPs showed reduced voltages starting at around 125 ms when the S1 biased perception in a contrastive way as compared to when it did not. Our results suggest that face identity AEs do not only depend on physical differences between S1 and S2, but also on perceptual factors, such as the ambiguity of S1. Furthermore, short-term plasticity of face identity processing might work in parallel to object-category processing, and is reflected in the first 400 ms of the ERP.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号