首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
  2021年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1988年   1篇
  1987年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1961年   1篇
  1959年   1篇
  1957年   1篇
  1955年   1篇
排序方式: 共有36条查询结果,搜索用时 103 毫秒
1.
Desensitization of the insulin-secreting beta cell.   总被引:2,自引:0,他引:2  
In human diabetes, inherent impaired insulin secretion can be exacerbated by desensitization of the beta cell by chronic hyperglycemia. Interest in this phenomenon has generated extensive studies in genetic or experimentally induced diabetes in animals and in fully in vitro systems, with often conflicting results. In general, although chronic glucose causes decreased beta-cell response to this carbohydrate, basal response and response to alternate stimulating agents are enhanced. Glucose-stimulated insulin synthesis can be increased or decreased depending on the system studied. Using a two-compartment beta-cell model of phasic insulin secretion, a unifying hypothesis is described which can explain some of the apparent conflicting data. This hypothesis suggests that glucose-desensitization is caused by an impairment in stimulation of a hypothetical potentiator singularly responsible for: 1) some of the characteristic phases of insulin secretion; 2) basal release; 3) potentiation of non-glucose stimulators; and 4) apparent "recovery" from desensitization. Review of some of the pathways that regulate insulin secretion suggest that phosphoinositol metabolism and protein kinase-C production are regulated similarly to the theoretical potentiator and their impairment is a major contributor to glucose desensitization in the beta cell.  相似文献   
2.
The unsatisfactory results of radical operations in advanced anal cancer could be bettered by earlier diagnosis of the malignant lesion. The possibility of cancer should always be kept in mind when treating any of the common chronic anal diseases. Preliminary biopsy studies should be done more frequently if suspicious lesions are present and all tissues removed during minor anorectal operations should always be examined by a pathologist. Each surgical specimen should be labeled to show the site from which it was removed. Follow-up care of the patient would be simplified if the exact site of cancer origin could be identified.A recent ten-year survey of minor anorectal surgical procedures at the University of California Medical Center showed clinically unsuspected anal cancer found in 2 per cent of cases on tissue examination by the pathologist. The cancers were generally early and of the keratinizing squamous cell and nonkeratinizing varieties.  相似文献   
3.
Presence of the dihydrouridine (D) stem in the mitochondrial cysteine tRNA is unusually variable among lepidosaurian reptiles. Phylogenetic and comparative analyses of cysteine tRNA gene sequences identify eight parallel losses of the D-stem, resulting in D-arm replacement loops. Sampling within the monophyletic Acrodonta provides no evidence for reversal. Slipped-strand mispairing of noncontiguous repeated sequences during replication or direct replication slippage can explain repeats observed within cysteine tRNAs that contain a D-arm replacement loop. These two mechanisms involving replication slippage can account for the loss of the cysteine tRNA D-stem in several lepidosaurian lineages, and may represent general mechanisms by which the secondary structures of mitochondrial tRNAs are altered.   相似文献   
4.
5.
The complete cDNA sequence and protein reading frame of a developmentally regulated hemocyanin subunit in the Dungeness crab (Cancer magister) is presented. The protein sequence is aligned with 18 potentially homologous hemocyanin-type proteins displaying apparent sequence similarities. Functional domains are identified, and a comparison of predicted hydrophilicities, surface probabilities, and regional backbone flexibilities provides evidence for a remarkable degree of structural conservation among the proteins surveyed. Parsimony analysis of the protein sequence alignment identifies four monophyletic groups on the arthropodan branch of the hemocyanin gene tree: crustacean hemocyanins, insect hexamerins, chelicerate hemocyanins, and arthropodan prophenoloxidases. They form a monophyletic group relative to molluscan hemocyanins and nonarthropodan tyrosinases. Arthropodan prophenoloxidases, although functionally similar to tyrosinases, appear to belong to the arthropodan hexamer- type hemolymph proteins as opposed to molluscan hemocyanins and tyrosinases.   相似文献   
6.
7.
A kinetic model involving synthesis of proinsulin in the rough endoplasmic reticulum, maturation through the Golgi apparatus and granules, with conversion to insulin, is proposed to account for data on the amount of insulin and of proinsulin both secreted during various time intervals and remaining in islets. Introducing three compartments for granules makes it possible to account for the measurement of both hot (pulse labeled with tritiated leucine) and cold proinsulin and insulin over a period of 21/2 hr under constant glucose. Data from islets from animals pretreated with tolbutamide are also presented and modeled. The model is then expanded so that it can be successfully applied to available data on the effects of a period of glucose deprivation on secretion of both hot and cold hormone. Parameters have essentially the same values, where they overlap, as were obtained (Landahl and Grodsky, 1982Bull. math. Biol. 44, 399–410) from insulin secretion by perfused rat pancreas stimulated by a variety of temporal patterns of glucose concentration.  相似文献   
8.
9.
The bovine heart mitochondrial F1-ATPase (MF1) is reversibly inhibited in the dark by 4-amino-1-octylquinaldinium (AOQ) with an I0.5 value of 48 μM. When irradiated in the presence of AOQ, MF1 is photoinactivated with an apparent Kd of 12 μM. About 1.1 mol of [3H]AOQ were incorporated per mol of MF1 on complete photoinactivation. Fractionation of a cyanogen bromide digest of MF1 photolabeled with [3H]AOQ followed by fractionation of peptic digests of partially purified cyanogen bromide fragments led to isolation of two CNBr/peptic fragments labeled with3H. Sequence analysis of the labeled peptides revealed that one contained residues 423–441 of the β subunit. A gap in position 2 of the sequence indicates that βPhe424 is derivatized. The phenyl side-chain of this residue is part of a pocket that binds the adenine moiety of ATP or ADP at catalytic sites. The other peptide, which was labeled to a greater extent, contained residues 342–358 of the β subunit, but in this case, no gap was found in the sequence indicating that the derivatized amino-acid side-chain might not have survived the conditions of automatic Edman degradation. This peptide contains βTyr345, the side-chain of which is also a component of the pocket that binds the adenine moiety of ATP or ADP to catalytic sites. However, for the reason stated, there is no direct evidence that βTyr345 is labeled in this peptide.  相似文献   
10.
The crystal structure of porcine heart mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH) complexed with Mn2+ and isocitrate was solved to a resolution of 1.85 A. The enzyme was expressed in Escherichia coli, purified as a fusion protein with maltose binding protein, and cleaved with thrombin to yield homogeneous enzyme. The structure was determined by multiwavelength anomalous diffraction phasing using selenium substitution in the form of selenomethionine as the anomalous scatterer. The porcine NADP+-IDH enzyme is structurally compared with the previously solved structures of IDH from E. coli and Bacillus subtilis that share 16 and 17% identity, respectively, with the mammalian enzyme. The porcine enzyme has a protein fold similar to the bacterial IDH structures with each monomer folding into two domains. However, considerable differences exist between the bacterial and mammalian forms of IDH in regions connecting core secondary structure. Based on the alignment of sequence and structure among the porcine, E. coli, and B. subtilis IDH, a putative phosphorylation site has been identified for the mammalian enzyme. The active site, including the bound Mn2+-isocitrate complex, is highly ordered and, therefore, mechanistically informative. The consensus IDH mechanism predicts that the Mn2+-bound hydroxyl of isocitrate is deprotonated prior to its NADP+-dependent oxidation. The present crystal structure has an active site water that is well positioned to accept the proton and ultimately transfer the proton to solvent through an additional bound water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号