首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   5篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   7篇
  2012年   5篇
  2011年   9篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1998年   2篇
  1993年   1篇
  1988年   1篇
  1985年   1篇
  1977年   2篇
  1971年   1篇
排序方式: 共有70条查询结果,搜索用时 171 毫秒
1.
2.
3.
A wide-ranging examination of plastid (pt)DNA sequence homologies within higher plant nuclear genomes (promiscuous DNA) was undertaken. Digestion with methylation-sensitive restriction enzymes and Southern analysis was used to distinguish plastid and nuclear DNA in order to assess the extent of variability of promiscuous sequences within and between plant species. Some species, such as Gossypium hirsutum (cotton), Nicotiana tabacum (tobacco), and Chenopodium quinoa, showed homogenity of these sequences, while intraspecific sequence variation was observed among different cultivars of Pisum sativum (pea), Hordeum vulgare (barley), and Triticum aestivum (wheat). Hypervariability of plastid sequence homologies was identified in the nuclear genomes of Spinacea oleracea (spinach) and Beta vulgaris (beet), in which individual plants were shown to possess a unique spectrum of nuclear sequences with ptDNA homology. This hypervariability apparently extended to somatic variation in B. vulgaris. No sequences with ptDNA homology were identified by this method in the nuclear genome of Arabidopsis thaliana.   相似文献   
4.
A survey was conducted to determine the levels of fumonisins B1 and B2 in corn and corn-based products available in Colombia for human and animal consumption. A total of 120 samples were analyzed by acetonitrile-water extraction, cleanup with a strong-anion-exchange column, and liquid chromatography with o-phthaldialdehyde-2-mercaptoethanol derivatization and fluorescence detection. The samples of corn and corn-based products for animal intake were taken at different feed manufacturing plants, whereas the samples used for human foods where purchased from local retail stores. The number of positive samples for fumonisin B1 was 20.0% higher in corn and corn-based products for animal intake (75.0%) than in corn and corn-based products for human consumption (55.0%). The levels of fumonisin B1 were also higher in corn and corn-based products for animal intake (mean = 694 μg/kg; range = 32–2964 μg/kg), than in corn and corn-based products for human intake (mean = 218 μg/kg; range = 24–2170 μg/ kg). The incidence and levels of fumonisin B2 were lower than those for fumonisin B1. Corn and corn-based products for animal consumption had an incidence of fumonisin B2 of 58.3%, with a mean value of 283 μg/kg, and a range of 44–987 μg/kg. The incidence of fumonisin B2 in corn-based products for human intake was 35.0%, with a mean value of 118 μg/kg and a range of 21–833 μg/kg. The highest incidence and levels of fumonisins were found in samples of hominy feed, with concentrations ranging from 86 to 2964 μg/kg fumonisin B1 and 57 to 987 μg/kg fumonisin B2.  相似文献   
5.
A. Ghosh  N.S. Gov 《Biophysical journal》2014,107(5):1065-1073
Active fluctuations, driven by processes that consume ATP, are prevalent in living cells and are mostly driven by different forms of molecular motors. Such motors often move and transmit forces along biopolymers, which in general can be treated as semiflexible chains. We present a theoretical analysis of the active (out of thermal equilibrium) fluctuation of semiflexible polymers, using both analytical and simulation methods. We find that enhanced diffusion, even superdiffusive, occurs in a well-defined temporal regime, defined by the thermal modes of the chain and the typical timescale of the activity. In addition, we find a dynamic resonance-like condition between the elastic modes of the chain and the duration of the active force, which leads to enhanced spatial correlation of local displacements. These results are in qualitative agreement with observations of cytoskeletal biopolymers, and were recently observed for the dynamics of chromatin in interphase cells. We therefore propose that the interplay between elasticity and activity is driving long-range correlations in our model system, and may also be manifest inside living cells.  相似文献   
6.
Cortactin is involved in invadopodia and podosome formation [1], pathogens and endosome motility [2], and persistent lamellipodia protrusion [ [3] and [4] ]; its overexpression enhances cellular motility and metastatic activity [ [5] , [6] , [7] and [8] ]. Several mechanisms have been proposed to explain cortactin's role in Arp2/3-driven actin polymerization [ [9] and [10] ], yet its direct role in cell movement remains unclear. We use a biomimetic system to study the mechanism of cortactin-mediated regulation of actin-driven motility [11]. We tested the role of different cortactin variants that interact with Arp2/3 complex and actin filaments distinctively. We show that wild-type cortactin significantly enhances the bead velocity at low concentrations. Single filament experiments show that cortactin has no significant effect on actin polymerization and branch stability, whereas it strongly affects the branching rate driven by Wiskott-Aldrich syndrome protein (WASP)-VCA fragment and Arp2/3 complex. These results lead us to propose that cortactin plays a critical role in translating actin polymerization at a bead surface into motion, by releasing WASP-VCA from the new branching site. This enhanced release has two major effects: it increases the turnover rate of branching per WASP molecule, and it decreases the friction-like force caused by the binding of the moving surface with respect to the growing actin network.  相似文献   
7.
Lavi Y  Gov N  Edidin M  Gheber LA 《Biophysical journal》2012,102(7):1543-1550
Lateral heterogeneity of cell membranes has been demonstrated in numerous studies showing anomalous diffusion of membrane proteins; it has been explained by models and experiments suggesting dynamic barriers to free diffusion, that temporarily confine membrane proteins into microscopic patches. This picture, however, comes short of explaining a steady-state patchy distribution of proteins, in face of the transient opening of the barriers. In our previous work we directly imaged persistent clusters of MHC-I, a type I transmembrane protein, and proposed a model of a dynamic equilibrium between proteins newly delivered to the cell surface by vesicle traffic, temporary confinement by dynamic barriers to lateral diffusion, and dispersion of the clusters by diffusion over the dynamic barriers. Our model predicted that the clusters are dynamic, appearing when an exocytic vesicle fuses with the plasma membrane and dispersing with a typical lifetime that depends on lateral diffusion and the dynamics of barriers. In a subsequent work, we showed this to be the case. Here we test another prediction of the model, and show that changing the stability of actin barriers to lateral diffusion changes cluster lifetimes. We also develop a model for the distribution of cluster lifetimes, consistent with the function of barriers to lateral diffusion in maintaining MHC-I clusters.  相似文献   
8.
9.
Cell shape is determined by a balance of intrinsic properties of the cell as well as its mechanochemical environment. Inhomogeneous shape changes underlie many morphogenetic events and involve spatial gradients in active cellular forces induced by complex chemical signaling. Here, we introduce a mechanochemical model based on the notion that cell shape changes may be induced by external diffusible biomolecules that influence cellular contractility (or equivalently, adhesions) in a concentration-dependent manner—and whose spatial profile in turn is affected by cell shape. We map out theoretically the possible interplay between chemical concentration and cellular structure. Besides providing a direct route to spatial gradients in cell shape profiles in tissues, we show that the dependence on cell shape helps create robust mechanochemical gradients.  相似文献   
10.
The assembly and budding of a new virus is a fundamental step in retroviral replication. Yet, despite substantial progress in the structural and biochemical characterization of retroviral budding, the underlying physical mechanism remains poorly understood, particularly with respect to the mechanism by which the virus overcomes the energy barrier associated with the formation of high membrane curvature during viral budding. Using atomic force, fluorescence, and transmission electron microscopy, we find that both human immunodeficiency virus and Moloney murine leukemia virus remodel the actin cytoskeleton of their host. These actin-filamentous structures assemble simultaneously with or immediately after the beginning of budding, and disappear as soon as the nascent virus is released from the cell membrane. Analysis of sections of cryopreserved virus-infected cells by transmission electron microscopy reveals similar actin filament structures emerging from every nascent virus. Substitution of the nucleocapsid domain implicated in actin binding by a leucine-zipper domain results in the budding of virus-like particles without remodeling of the cell's cytoskeleton. Notably, viruses carrying the modified nucleocapsid domains bud more slowly by an order of magnitude compared to the wild-type. The results of this study show that retroviruses utilize the cell cytoskeleton to expedite their assembly and budding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号