首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   8篇
  2023年   3篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   9篇
  2014年   10篇
  2013年   11篇
  2012年   6篇
  2011年   4篇
  2010年   8篇
  2009年   8篇
  2008年   8篇
  2007年   8篇
  2005年   6篇
  2004年   7篇
  2003年   1篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1995年   1篇
  1994年   1篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1981年   4篇
  1980年   4篇
  1979年   6篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   5篇
  1971年   2篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1962年   1篇
  1957年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
1.

Background  

Chow and Liu showed that the maximum likelihood tree for multivariate discrete distributions may be found using a maximum weight spanning tree algorithm, for example Kruskal's algorithm. The efficiency of the algorithm makes it tractable for high-dimensional problems.  相似文献   
2.
3.
Here, we investigate Mid- to Late-Holocene vegetation changes in low-lying coastal areas in Tonga and how changing sea levels and recurrent volcanic eruptions have influenced vegetation dynamics on four islands of the Tongan archipelago (South Pacific). To investigate past vegetation and environmental change at Ngofe Marsh (‘Uta Vava’u), we examined palynomorphs (pollen and spores), charcoal (fire), and sediment characteristics (volcanic activity) from a 6.7-m-long sediment core. Radiocarbon dating indicated the sediments were deposited over the last 7700 years. We integrated the Ngofe Marsh data with similar previously published data from Avai’o’vuna Swamp on Pangaimotu Island, Lotofoa Swamp on Foa Island, and Finemui Swamp on Ha’afeva Island. Plant taxa were categorized as littoral, mangrove, rainforest, successional/ disturbance, and wetland groups, and linear models were used to examine relationships between vegetation, relative sea level change, and volcanic eruptions (tephra). We found that relative sea level change has impacted vegetation on three of the four islands investigated. Volcanic eruptions were not identified as a driver of vegetation change. Rainforest decline does not appear to be driven by sea level changes or volcanic eruptions. From all sites analyzed, vegetation at Finemui Swamp was most sensitive to changes in relative sea level. While vegetation on low-lying Pacific islands is sensitive to changing sea levels, island characteristics, such as area and elevation, are also likely to be important factors that mediate specific island responses to drivers of change.  相似文献   
4.
Commercially obtained fruits of Corylus avellana exhibit the characteristic loss of dormancy of this seed following chilling under moist conditions. The activities of cytosolic and organellar enzymes of pentose phosphate pathway in cotyledonary tissue were assayed throughout stratification and over a similar period in damp vermiculite at 20° C. Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconic acid dehydrogenase (6PGDH) were both found in cytosolic extracts in all treatments; only 6PGDH was present in the organellar fraction.The enzyme activities monitored in seeds at 20° C remained relatively constant over the course of the investigation except in the case of cytosolic 6PGDH where it is suggested an inhibitor of the enzyme accumulated. This inhibitor was removed by the partial purification procedure. Increases in the activities of the enzymes occurred during stratification, the major increase coinciding exactly with dormancy breakage but prior to the initiation of germination. The marked increase in G6PDH and 6PGDH concurrent with the change in germination potential of the chilled seed may have considerable biochemical significance in breaking down the dormant state.Abbreviations G6P glucose-6-phosphate - G6PDH glucose-6 phosphate dehydrogenase - NADP nicotinamide adenine dinucleotide phosphate - 6 PGDH 6-phosphogluconic acid dehydrogenase - PPP pentose phosphate pathway  相似文献   
5.
6.
Vegetation History and Archaeobotany - Wetlands have been attractive environments for early communities worldwide. In China, wetlands offered natural ecological settings for the start of rice...  相似文献   
7.
8.
9.

Background

The most common application of imputation is to infer genotypes of a high-density panel of markers on animals that are genotyped for a low-density panel. However, the increase in accuracy of genomic predictions resulting from an increase in the number of markers tends to reach a plateau beyond a certain density. Another application of imputation is to increase the size of the training set with un-genotyped animals. This strategy can be particularly successful when a set of closely related individuals are genotyped.

Methods

Imputation on completely un-genotyped dams was performed using known genotypes from the sire of each dam, one offspring and the offspring’s sire. Two methods were applied based on either allele or haplotype frequencies to infer genotypes at ambiguous loci. Results of these methods and of two available software packages were compared. Quality of imputation under different population structures was assessed. The impact of using imputed dams to enlarge training sets on the accuracy of genomic predictions was evaluated for different populations, heritabilities and sizes of training sets.

Results

Imputation accuracy ranged from 0.52 to 0.93 depending on the population structure and the method used. The method that used allele frequencies performed better than the method based on haplotype frequencies. Accuracy of imputation was higher for populations with higher levels of linkage disequilibrium and with larger proportions of markers with more extreme allele frequencies. Inclusion of imputed dams in the training set increased the accuracy of genomic predictions. Gains in accuracy ranged from close to zero to 37.14%, depending on the simulated scenario. Generally, the larger the accuracy already obtained with the genotyped training set, the lower the increase in accuracy achieved by adding imputed dams.

Conclusions

Whenever a reference population resembling the family configuration considered here is available, imputation can be used to achieve an extra increase in accuracy of genomic predictions by enlarging the training set with completely un-genotyped dams. This strategy was shown to be particularly useful for populations with lower levels of linkage disequilibrium, for genomic selection on traits with low heritability, and for species or breeds for which the size of the reference population is limited.  相似文献   
10.
Animals are colonized by complex bacterial communities. The processes controlling community membership and influencing the establishment of the microbial ecosystem during development are poorly understood. Here we aimed to explore the assembly of bacterial communities in Hydra with the broader goal of elucidating the general rules that determine the temporal progression of bacterial colonization of animal epithelia. We profiled the microbial communities in polyps at various time points after hatching in four replicates. The composition and temporal patterns of the bacterial communities were strikingly similar in all replicates. Distinct features included high diversity of community profiles in the first week, a remarkable but transient adult-like profile 2 weeks after hatching, followed by progressive emergence of a stable adult-like pattern characterized by low species diversity and the preponderance of the Betaproteobacterium Curvibacter. Intriguingly, this process displayed important parallels to the assembly of human fecal communities after birth. In addition, a mathematical modeling approach was used to uncover the organizational principles of this colonization process, suggesting that both, local environmental or host-derived factor(s) modulating the colonization rate, as well as frequency-dependent interactions of individual bacterial community members are important aspects in the emergence of a stable bacterial community at the end of development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号