首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有12条查询结果,搜索用时 359 毫秒
1.
Molecular Biology Reports - Serine hydrolases play crucial roles in many physiological and pathophysiological processes and a panel of these enzymes are targets of approved drugs. Despite this,...  相似文献   
2.
SSO1273 of Sulfolobus solfataricus was identified as a cell surface-bound protein by a proteomics approach. Sequence inspection of the genome revealed that the open reading frame of sso1273 is associated in an operon-like structure with genes encoding all the remaining components of a canonical protein-dependent ATP-binding cassette (ABC) transporter. sso1273 gene expression and SSO1273 protein accumulation on the cell surface were demonstrated to be strongly induced by the addition of a peptide mixture (tryptone) to the culture medium. The native protein was obtained in multimeric form, mostly hexameric, under the purification conditions used, and it was characterized as an oligopeptide binding protein, named S. solfataricus OppA (OppASs). OppaASs possesses typical sequence patterns required for glycosylphosphatidylinositol lipid anchoring, resulting in an N-linked glycoprotein with carbohydrate moieties likely composed of high mannose and/or hybrid complex carbohydrates. OppASs specifically binds oligopeptides and shows a marked selectivity for the amino acid composition of substrates when assayed in complex peptide mixtures. Moreover, a truncated version of OppASs, produced in recombinant form and including the putative binding domain, showed a low but significant oligopeptide binding activity.Sulfolobus solfataricus is an obligate aerobe that grows in hot and acidic environments either chemolithotrophically by oxidizing metal cations (Fe2+ or S) or heterotrophically on simple sugars. It originates from a solfataric field with temperatures between 75°C and 90°C and pH values of 1.0 to 3.0 (9, 15). Within its environment, Sulfolobus can interact with a complex ecosystem consisting of a variety of primary producers and decomposers of organic matter. Moreover, biotopes such as the solfataric field of Sulfolobus contain decomposing materials of higher plants, including cellulose, starch, and proteinaceous compounds, that can act as potential carbon sources. Although S. solfataricus has been reported to grow on a wide variety of reduced organic compounds as the sole carbon and energy source (15), the nutrient utilization by this microorganism requires complex mechanisms of uptake and metabolism that are not yet well defined.Numerous efforts have been directed toward the identification of the carbohydrate utilization strategy in this hyperthermophilic archaeon (18, 23). The metabolic pathways for the degradation of a variety of sugars have been studied in detail and provide evidence that S. solfataricus predominantly uses binding-protein-dependent ABC transporters for the uptake of carbohydrate compounds (1, 2, 13).Archaeal ABC uptake systems are divided into two main classes: the carbohydrate (CUT) and the di-/oligopeptide uptake transporter classes (2). These transporter families use ATP hydrolysis to drive a unidirectional accumulation of solutes into the cytoplasm. The translocator components are composed of two integral membrane proteins, two peripheral membrane proteins that bind and hydrolyze ATP, and an extracellular substrate-binding protein (SBP). The SBP subunit captures and delivers the substrate to the translocon, and it is therefore considered to be one of the determinants of the transport specificity (2, 7, 10).All sequenced genomes of archaea and thermophilic bacteria contain a large number of genes encoding putative ABC transport systems involved in the uptake of organic solutes. The preference of hyperthermophiles for ABC-type transporters could be important for the survival strategy in their natural habitat. In the nutrient-poor environments, such as hydrothermal vents or sulfuric hot springs, in which these organisms thrive, ABC transporters have the advantage that they can scavenge solutes at very low concentrations due to the high binding affinities of their SBP components. Furthermore, these transporters can catalyze translocation at a high rate, resulting in high internal concentrations of solutes. In contrast, secondary transport systems exhibit lower binding affinities, which make these systems less suitable for growth in extreme environments.So far, attempts to predict the functional specificity of the ABC transporters using computational tools have been largely unsuccessful (2, 13, 20). For example, some characterized archaeal sugar transporters, based on the sequence identity and domain organization, were predicted to be di-/oligopeptide transporters (13, 20). These include the cellobiose/β-glucoside transporter system of Pyrococcus furiosus (20) and the maltose/maltodextrin and cellobiose/cello-oligomer transporters of S. solfataricus (13). However, genes encoding sugar-metabolizing enzymes are located in the vicinity of all these transport systems, suggesting that the location of the ABC operon can support the specific transport function.Like oligopeptide binding proteins, MalE and CbtA bind a broad range of polymeric substrates (13, 20). In contrast, sugar-binding proteins usually exhibit a narrow substrate specificity that is often limited to monosaccharides. Therefore, it may well be that the substrate binding pocket of CbtA and MalE resembles that of the OppA family of binding proteins that can accommodate a range of short and long oligopeptides.S. solfataricus contains 37 putative ABC transporters at the genome level (TransportDB, Genomic Comparisons of Membrane Transport systems [http://www.membranetransport.org/index.html]), but only a few of these systems have been functionally characterized. It is interesting that all of these are implicated in the uptake of mono-/oligosaccharides (1, 13, 20, 25).The present work describes the isolation and characterization of the first functional ABC substrate binding protein from S. solfataricus belonging to the di-/oligopeptide transporter family, named S. solfataricus OppA (OppASs). We demonstrate that OppASs is an outer-cell-surface-anchored protein and that its expression is highly induced in the presence of a source of peptides in the culture broth. Furthermore, in vitro substrate specificity studies using complex oligopeptide mixtures indicate that OppASs is highly selective in peptide recognition.  相似文献   
3.

Halophilic archaea, thriving in hypersaline environments, synthesize antimicrobial substances with an unknown role, called halocins. It has been suggested that halocin production gives transient competitive advantages to the producer strains and represents one of the environmental factors influencing the microbial community composition. Herein, we report on the antibacterial activity of a new haloarchaeon selected from solar salterns of the northern coast of Algeria. A total of 81 halophilic strains, isolated from the microbial consortia, were screened for the production of antimicrobial compounds by interspecies competition test and against a collection of commercial haloarchaea. On the basis of the partial 16S rRNA sequencing, the most efficient halocin producer was recognized as belonging to Haloferax (Hfx) sp., while the best indicator microorganism, showing high sensitivity toward halocin, was related to Haloarcula genus. The main morphological, physiological and biochemical properties of Hfx were investigated and a partial purification of the produced halocin was allowed to identify it as a surface membrane protein with a molecular mass between 30 and 40 kDa. Therefore, in this study, we isolated a new strain belonging to Haloferax genus and producing a promising antimicrobial compound useful for applications in health and food industries.

  相似文献   
4.
In this study we gain insight into the structural and functional characterization of the Aeropyrum pernix oligopeptide-binding protein (OppA(Ap)) previously identified from the extracellular medium of an Aeropyrum pernix cell culture at late stationary phase. OppA(Ap) showed an N-terminal Q32 in a pyroglutamate form and C-terminal processing at the level of a threonine-rich region probably involved in protein membrane anchoring. Moreover, the OppA(Ap) protein released into the medium was identified as a "nicked" form composed of two tightly associated fragments detachable only under strong denaturing conditions. The cleavage site E569-G570 seems be located on an exposed surface loop that is highly conserved in several three-dimensional (3D) structures of dipeptide/oligopeptide-binding proteins from different sources. Structural and biochemical properties of the nicked protein were virtually indistinguishable from those of the intact form. Indeed, studies of the entire bacterially expressed OppA(Ap) protein owning the same N and C termini of the nicked form supported these findings. Moreover, in the middle exponential growth phase, OppA(Ap) was found as an intact cell membrane-associated protein. Interestingly, the native exoprotein OppA(Ap) was copurified with a hexapeptide (EKFKIV) showing both lysines methylated and possibly originating from an A. pernix endogenous stress-induced lipoprotein. Therefore, the involvement of OppA(Ap) in the recycling of endogenous proteins was suggested to be a potential physiological function. Finally, a new OppA from Sulfolobus solfataricus, SSO1288, was purified and preliminarily characterized, allowing the identification of a common structural/genetic organization shared by all "true" archaeal OppA proteins of the dipeptide/oligopeptide class.  相似文献   
5.
The gene encoding the superoxide dismutase from the hyperthermophilic archaeon Sulfolobus solfataricus (SsSOD) was cloned and sequenced and its expression in Escherichia coli obtained. The chemicophysical properties of the recombinant SsSOD were identical with those of the native enzyme. The recombinant SsSOD possessed a covalent modification of Tyr41, already observed in native SsSOD [Ursby, T., Adinolfi, B.S., Al-Karadaghi, S., De Vendittis, E. & Bocchini, V. (1999) J. Mol. Biol. 286, 189--205]. HPLC analysis of SsSOD samples prepared from cells treated or not with phenylmethanesulfonyl fluoride (PhCH(2)SO(2)F), a protease inhibitor routinely added during the preparation of cell-free extracts, showed that the modification was caused by PhCH(2)SO(2)F. Refinement of the crystal model of SsSOD confirmed that a phenylmethanesulfonyl moiety was attached to the hydroxy group of Tyr41. PhCH(2)SO(2)F behaved as an irreversible inactivator of SsSOD; in fact, the specific activity of both native and recombinant enzyme decreased as the percentage of modification increased. The covalent modification caused by PhCH2SO2F reinforced the heat stability of SsSOD. These results show that Tyr41 plays an important role in the enzyme activity and the maintenance of the structural architecture of SsSOD.  相似文献   
6.
Fusidic acid (FA) and helvolic acid (HA) belong to a small family of naturally occurring steroidal antibiotics known as fusidanes. FA was studied for its ability to alter the biochemical properties supported by elongation factor 2 isolated from the archaeon Sulfolobus solfataricus (SsEF-2). Both poly(Phe) synthesis and ribosome-dependent GTPase (GTPase(r)) were progressively impaired by increasing concentrations of FA up to 1 mM, whereas no effect was measured in the intrinsic GTPase of SsEF-2 triggered by ethylene glycol in the presence of barium chloride (GTPase(g)). The highest antibiotic concentration caused inhibition of either poly(Phe) synthesis or GTPase(r) only slightly above 50%. A greater response of SsEF-2 was observed when HA was used instead of FA. HA caused even a weak impairment of GTPase(g). A mutated form of SsEF-2 carrying the L452R substitution exhibited an increased sensitivity to fusidane inhibition in either poly(Phe) synthesis or GTPase(r). Furthermore, both FA and HA were able to cause impairment of GTPase(g). The antibiotic concentrations leading to 50% inhibition (IC(50)) indicate that increased fusidane responsiveness due to the use of HA or the L452R amino acid replacement is mutually independent. However, their combined effect decreased the IC(50) up to 0.1 mM. Despite the difficulties in reaching complete inhibition of the translocation process in S. solfataricus, these findings suggest that fusidane sensibility is partially maintained in the archaeon S. solfataricus. Therefore, it is likely that SsEF-2 harbors the structural requirements for forming complexes with fusidane antibiotics. This hypothesis is further evidenced by the observed low level of impairment of GTPase(g), a finding suggesting a weak direct interaction between the archaeal factor and fusidanes even in the absence of the ribosome. However, the ribosome remains essential for the sensitivity of SsEF-2 toward fusidane antibiotics.  相似文献   
7.
Acylpeptide hydrolase (APEH), one of the four members of the prolyl oligopeptidase class, catalyses the removal of N-acylated amino acids from acetylated peptides and it has been postulated to play a key role in protein degradation machinery. Disruption of protein turnover has been established as an effective strategy to down-regulate the ubiquitin-proteasome system (UPS) and as a promising approach in anticancer therapy.Here, we illustrate a new pathway modulating UPS and proteasome activity through inhibition of APEH. To find novel molecules able to down-regulate APEH activity, we screened a set of synthetic peptides, reproducing the reactive-site loop of a known archaeal inhibitor of APEH (SsCEI), and the conjugated linoleic acid (CLA) isomers. A 12-mer SsCEI peptide and the trans10-cis12 isomer of CLA, were identified as specific APEH inhibitors and their effects on cell-based assays were paralleled by a dose-dependent reduction of proteasome activity and the activation of the pro-apoptotic caspase cascade. Moreover, cell treatment with the individual compounds increased the cytoplasm levels of several classic hallmarks of proteasome inhibition, such as NFkappaB, p21, and misfolded or polyubiquitinylated proteins, and additive effects were observed in cells exposed to a combination of both inhibitors without any cytotoxicity. Remarkably, transfection of human bronchial epithelial cells with APEH siRNA, promoted a marked accumulation of a mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), herein used as a model of misfolded protein typically degraded by UPS. Finally, molecular modeling studies, to gain insights into the APEH inhibition by the trans10-cis12 CLA isomer, were performed.Our study supports a previously unrecognized role of APEH as a negative effector of proteasome activity by an unknown mechanism and opens new perspectives for the development of strategies aimed at modulation of cancer progression.  相似文献   
8.
This study describes the investigation of the efficiency of conjugated linoleic acid (CLA) isomers in reducing cancer cells viability exploring the role of the oxidative stress and acylpeptide hydrolase (APEH)/proteasome mediated pathways on pro-apoptotic activity of the isomer trans10,cis12 (t10,c12)-CLA. The basal activity/expression levels of APEH and proteasome (β-5 subunit) were preliminarily measured in eight cancer cell lines and the functional relationship between these enzymes was clearly demonstrated through their strong positive correlation. t10,c12-CLA efficiently inhibited the activity of APEH and proteasome isoforms in cell-free assays and the negative correlation between cell viability and caspase 3 activity confirmed the pro-apoptotic role of this isomer. Finally, modulatory effects of t10,c12-CLA on cellular redox status (intracellular glutathione, mRNA levels of antioxidant/detoxifying enzymes activated through NF-E2-related factor 2, Nrf2, pathway) and on APEH/β-5 activity/expression levels, were investigated in A375 melanoma cells. Dose- and time-dependent variations of the considered parameters were established and the resulting pro-apoptotic effects were shown to be associated with an alteration of the redox status and a down-regulation of APEH/proteasome pathway. Therefore, our results support the idea that these events are involved in ROS-dependent apoptosis of t10,c12-CLA-treated A375 cells. The combined inhibition, triggered by t10,c12-CLA, via the modulation of APEH/proteasome and Nrf2 pathway for treating melanoma, is suggested as a subject for further in vivo studies.  相似文献   
9.
This work describes the identification and characterization of a Sulfolobus solfataricus acylpeptide hydrolase, named APEH(Ss), recognised as a new protease target of the endogenous PEBP inhibitor, SsCEI. APEH is one of the four members of the prolyl oligopeptidase (POP) family, which removes acylated amino acid residues from the N terminus of oligopeptides. APEH(Ss) is a cytosolic homodimeric protein with a molecular mass of 125 kDa. It displays a similar exopeptidase and endopeptidase activity to the homologous enzymes from Aeropyrum pernix and Pyrococcus horikoshii. Herein we demonstrate that SsCEI is the first PEBP protein found to efficiently inhibit APEH from both S. solfataricus and mammalian sources with IC(50) values in the nanomolar range. The 3D model of APEH(Ss) shows the typical structural features of the POP family including an N-terminal β-propeller and a C-terminal α/β hydrolase domain. Moreover, to gain insights into the binding mode of SsCEI toward APEH(Ss), a structural model of the inhibition complex is proposed, suggesting a mechanism of steric blockage on substrate access to the active site or on product release. Like other POP enzymes, APEH may constitute a new therapeutic target for the treatment of a number of pathologies and this study may represent a starting point for further medical research.  相似文献   
10.
We have examined and compared the effects of mutating Y41 and H155 in the iron superoxide dismutase (SOD) from the archaeon Sulfolobus solfataricus (Ss). These two neighboring residues in the active site are known to have crucial functions in structurally related SODs from different sources. The metal analysis indicates a slightly lower iron content after either Y41F or H155Q replacement, without any significant substitution of iron for manganese. The specific activity of SsSOD referred to the iron content is 17-fold reduced in the Y41F mutant, whereas it is less than 2-fold reduced by the H155Q mutation. The noticeable pH dependence of the activity of SsSOD and H155Q-SsSOD, due to the ionization of Y41 (pK 8.4), is lost in Y41F-SsSOD. After H155Q and even more after the Y41F substitution, the archaeal enzyme acquires a moderate sensitivity to sodium azide inhibition. The hydrogen peroxide inactivation of SsSOD is significantly increased after H155Q replacement; however, both mutants are insensitive to the modification of residue 41 by phenylmethanesulfonyl fluoride. Heat inactivation studies showed that the high stability of SsSOD is reduced by the H155Q mutation; however, upon the addition of SDS, a much faster inactivation kinetics is observed both with wild-type and mutant SsSOD forms. The detergent is also required to follow thermal denaturation of the archaeal enzyme by Fourier transform infrared spectroscopy; these studies gave information about the effect of mutations and modification on flexibility and compactness of the protein structure. The crystal structure of Y41F mutant revealed an uninterrupted hydrogen bond network including three solvent molecules connecting the iron-ligating hydroxide ion via H155 with F41 and H37, which is not present in structures of the corresponding mutant SODs from other sources. These data suggest that Y41 and H155 are important for the structural and functional properties of SsSOD; in particular, Y41 seems to be a powerful regulator of the activity of SsSOD, whereas H155 is apparently involved in the organization of the active site of the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号