首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  2017年   1篇
  2013年   3篇
  2012年   3篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  1996年   1篇
排序方式: 共有38条查询结果,搜索用时 621 毫秒
1.

Purpose and experimental design

Recombinant human IL-2 (rhIL-2) is a potent cytokine and FDA-approved anticancer drug. However, its clinical use has been limited by severe toxicity, associated primarily with systemic administration with excess protein distributing freely throughout the body. We hypothesized that rhIL-2 in alternate forms permitting more restricted localization may exert stronger antitumor efficacy and less toxicity. Here, we have tested the utility of palmitate-derivatized rhIL-2. rhIL-2 was reacted with N-hydroxysuccinimide palmitate ester. The resultant lipidated rhIL-2 (pIL-2), when mixed with cells, could spontaneously transfer from solution to cell surfaces. Next, anticancer efficacy of pIL-2 was assessed in two modalities. For adoptive T cell therapy, antitumor cytotoxic T cells (CTLs) were protein transferred (“painted”) with pIL-2 and injected into mice bearing lymphoma. For in situ therapy, pIL-2 was injected intratumorally into mice bearing melanoma. Tumor growth and IL-2-associated toxicity were determined.

Results

In the lymphoma model, painting of the antitumor CTLs with pIL-2 markedly increased their viability and titer. In the melanoma model, intratumoral injection of pIL-2, but not rhIL-2, increased the number of activated CD8+ T cells (IFN-γ+) in the spleen, reduced lung metastasis and prolonged the survival of treated mice. Moreover, while repeated intratumoral injection of rhIL-2 at an excessively high dose (10 injections of 10,000 IU/mouse) caused marked vascular leakage syndrome, the same regimen using pIL-2 caused no detectable toxicity.

Conclusions

Transferring spontaneously from solution to cell surfaces, pIL-2 may bypass the current limitations of rhIL-2 and, thus, serve as a more effective and tolerable anticancer drug.  相似文献   
2.
3.
Type IV collagen, which is present in all metazoan, exists as a family of six homologous alpha(IV) chains, alpha1-alpha6, in mammals. The six chains assemble into three different triple helical protomers and self-associate as three distinct networks. The network underlies all epithelia as a component of basement membranes, which play important roles in cell adhesion, growth, differentiation, tissue repair and molecular ultrafiltration. The specificity of both protomer and network assembly is governed by amino acid sequences of the C-terminal noncollagenous (NC1) domain of each chain. In this study, the structural basis for protomer and network assembly was investigated by determining the crystal structure of the ubiquitous [(alpha1)(2).alpha2](2) NC1 hexamer of bovine lens capsule basement membrane at 2.0 A resolution. The NC1 monomer folds into a novel tertiary structure. The (alpha1)(2).alpha2 trimer is organized through the unique three-dimensional domain swapping interactions. The differences in the primary sequences of the hypervariable region manifest in different secondary structures, which determine the chain specificity at the monomer-monomer interfaces. The trimer-trimer interface is stabilized by the extensive hydrophobic and hydrophilic interactions without a need for disulfide cross-linking.  相似文献   
4.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   
5.
Collagen IV networks are present in all metazoans as components of basement membranes that underlie epithelia. They are assembled by the oligomerization of triple-helical protomers, composed of three alpha-chains. The trimeric noncollagenous domains (NC1) of each protomer interact forming a hexamer structure. Upon exposure to acidic pH or denaturants, the hexamer dissociates into monomer and dimer subunits, the latter reflect distinct interactions that reinforce/cross-link the quaternary structure of hexamer. Recently, the cross-link site of the alpha1alpha1alpha2 network was identified, on the basis of x-ray crystal structures at 1.9-A resolution, in which the side chains of Met93 and Lys211 were proposed to be connected by a novel thioether bond (Than, M. E., Henrich, S., Huber, R., Ries, A., Mann, K., Kuhn, K., Timpl, R., Bourenkov, G. P., Bartunik, H. D., and Bode, W. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 6607-6612); however, at the higher resolution of 1.5 A, we found no evidence for this cross-link (Vanacore, R. M., Shanmugasundararaj, S., Friedman, D. B., Bondar, O., Hudson, B. G., and Sundaramoorthy, M. (2004) J. Biol. Chem. 279, 44723-44730). Given this discrepancy in crystallographic findings, we sought chemical evidence for the location and nature of the reinforcement/cross-link site. Trypsin digestion of monomer and dimer subunits excised a approximately 5,000-Da complex that distinguished dimers from monomers; the complex was characterized by mass spectrometry, Edman degradation, and amino acid composition analyses. The tryptic complex, composed of two peptides of 44 residues derived from two alpha1 NC1 monomers, contained Met93 and Lys211 post-translationally modified to hydroxylysine (Hyl211). Truncation of the tryptic complex with post-proline endopeptidase reduced its size to 14 residues to facilitate characterization by tandem mass spectrometry, which revealed a covalent linkage between Met93 and Hyl211. The novel cross-link, termed S-hydroxylysyl-methionine, reflects at least two post-translational events in its formation: the hydroxylation of Lys211 to Hyl211 within the NC1 domain during the biosynthesis of alpha-chains and the connection of Hyl211 to Met93 between the trimeric NC1 domains of two adjoining triple-helical protomers, reinforcing the stability of collagen IV networks.  相似文献   
6.
Sterol 14α-demethylase (14DM, the CYP51 family of cytochrome P450) is an essential enzyme in sterol biosynthesis in eukaryotes. It serves as a major drug target for fungal diseases and can potentially become a target for treatment of human infections with protozoa. Here we present 1.9 Å resolution crystal structures of 14DM from the protozoan pathogen Trypanosoma brucei, ligand-free and complexed with a strong chemically selected inhibitor N-1-(2,4-dichlorophenyl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadi-azol-2-yl)benzamide that we previously found to produce potent antiparasitic effects in Trypanosomatidae. This is the first structure of a eukaryotic microsomal 14DM that acts on sterol biosynthesis, and it differs profoundly from that of the water-soluble CYP51 family member from Mycobacterium tuberculosis, both in organization of the active site cavity and in the substrate access channel location. Inhibitor binding does not cause large scale conformational rearrangements, yet induces unanticipated local alterations in the active site, including formation of a hydrogen bond network that connects, via the inhibitor amide group fragment, two remote functionally essential protein segments and alters the heme environment. The inhibitor binding mode provides a possible explanation for both its functionally irreversible effect on the enzyme activity and its selectivity toward the 14DM from human pathogens versus the human 14DM ortholog. The structures shed new light on 14DM functional conservation and open an excellent opportunity for directed design of novel antiparasitic drugs.  相似文献   
7.
The most commonly occurring sialic acid Neu5Ac (N-acetylneuraminic acid) and its deaminated form, KDN (2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid), participate in many biological functions. The human Neu5Ac-9-P (Neu5Ac 9-phosphate) synthase has the unique ability to catalyse the synthesis of not only Neu5Ac-9-P but also KDN-9-P (KDN 9-phosphate). Both reactions are catalysed by the mechanism of aldol condensation of PEP (phosphoenolpyruvate) with sugar substrates, ManNAc-6-P (N-acetylmannosamine 6-phosphate) or Man-6-P (mannose 6-phosphate). Mouse and putative rat Neu5Ac-9-P synthases, however, do not show KDN-9-P synthase activity, despite sharing high sequence identity (>95%) with the human enzyme. Here, we demonstrate that a single mutation, M42T, in human Neu5Ac-9-P synthase can abolish the KDN-9-P synthase activity completely without compromising the Neu5Ac-9-P synthase activity. Saturation mutagenesis of Met42 of the human Neu5Ac-9-P synthase showed that the substitution with all amino acids except leucine retains only the Neu5Ac-9-P synthase activity at levels comparable with the wild-type enzyme. The M42L mutant, like the wild-type enzyme, showed the additional KDN-9-P synthase activity. In the homology model of human Neu5Ac-9-P synthase, Met42 is located 22 A (1 A=0.1 nm) away from the substrate-binding site and the impact of this distant residue on the enzyme functions is discussed.  相似文献   
8.
Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.  相似文献   
9.
Steroid 21-hydroxylase (cytochrome P450 21A2, CYP21A2) deficiency accounts for ∼95% of individuals with congenital adrenal hyperplasia, a common autosomal recessive metabolic disorder of adrenal steroidogenesis. The effects of amino acid mutations on CYP21A2 activity lead to impairment of the synthesis of cortisol and aldosterone and the excessive production of androgens. In order to understand the structural and molecular basis of this group of diseases, the bovine CYP21A2 crystal structure complexed with the substrate 17-hydroxyprogesterone (17OHP) was determined to 3.0 Å resolution. An intriguing result from this structure is that there are two molecules of 17OHP bound to the enzyme, the distal one being located at the entrance of the substrate access channel and the proximal one bound in the active site. The substrate binding features locate the key substrate recognition residues not only around the heme but also along the substrate access channel. In addition, orientation of the skeleton of the proximal molecule is toward the interior of the enzyme away from the substrate access channel. The 17OHP complex of CYP21A2 provides a good relationship between the crystal structure, clinical data, and genetic mutants documented in the literature, thereby enhancing our understanding of congenital adrenal hyperplasia. In addition, the location of certain CYP21A2 mutations provides general understanding of structure/function relationships in P450s.  相似文献   
10.
Filarial nematodes enjoy one of the longest life spans of any human pathogen due to effective immune evasion strategies developed by the parasite. Among the various immune evasion strategies exhibited by the parasite, Interleukin 10 (IL-10) productions and IL-10 mediated immune suppression has significant negative impact on the host immune system. Recently, we identified a small heat shock protein expressed by Brugia malayi (BmHsp12.6) that can bind to soluble human IL-10 receptor alpha (IL-10R) and activate IL-10 mediated effects in cell lines. In this study we show that the IL-10R binding region of BmHsp12.6 is localized to its N-terminal region. This region has significant sequence similarity to the receptor binding region of human IL-10. In vitro studies confirm that the N-terminal region of BmHsp12.6 (N-BmHsp12.6) has IL-10 like activity and the region containing the alpha crystalline domain and C-terminus of BmHsp12.6 (BmHsp12.6αc) has no IL-10 like activity. However, BmHsp12.6αc contains B cell, T cell and CTL epitopes. Members of the sHSP families are excellent vaccine candidates. Evaluation of sera samples from putatively immune endemic normal (EN) subjects showed IgG1 and IgG3 antibodies against BmHsp12.6αc and these antibodies were involved in the ADCC mediated protection. Subsequent vaccination trials with BmHsp12.6αc in a mouse model using a heterologous prime boost approach showed that 83% protection can be achieved against B. malayi L3 challenge. Results presented in this study thus show that the N-BmHsp12.6 subunit of BmHsp12.6 has immunoregulatory function, whereas, the BmHsp12.6αc subunit of BmHsp12.6 has significant vaccine potential.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号