首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   1篇
  2021年   2篇
  2018年   1篇
  2016年   1篇
  2015年   6篇
  2014年   3篇
  2013年   5篇
  2012年   9篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有48条查询结果,搜索用时 566 毫秒
1.
Epidemiological studies have shown an increased obesity-related risk of asthma. In support, obese mice develop airway hyperresponsiveness (AHR). However, it remains unclear whether the increased risk is a consequence of obesity, adipogenic diet, or the metabolic syndrome (MetS). Altered L-arginine and nitric oxide (NO) metabolism is a common feature between asthma and metabolic syndrome that appears independent of body mass. Increased asthma risk resulting from such metabolic changes would have important consequences in global health. Since high-sugar diets can induce MetS, without necessarily causing obesity, studies of their effect on arginine/NO metabolism and airway function could clarify this aspect. We investigated whether normal-weight mice with MetS, due to high-fructose diet, had dysfunctional arginine/NO metabolism and features of asthma. Mice were fed chow-diet, high-fat-diet, or high-fructose-diet for 18 weeks. Only the high-fat-diet group developed obesity or adiposity. Hyperinsulinemia, hyperglycaemia, and hyperlipidaemia were common to both high-fat-diet and high-fructose-diet groups and the high-fructose-diet group additionally developed hypertension. At 18 weeks, airway hyperresponsiveness (AHR) could be seen in obese high-fat-diet mice as well as non-obese high-fructose-diet mice, when compared to standard chow-diet mice. No inflammatory cell infiltrate or goblet cell metaplasia was seen in either high-fat-diet or high-fructose-diet mice. Exhaled NO was reduced in both these groups. This reduction in exhaled NO correlated with reduced arginine bioavailability in lungs. In summary, mice with normal weight but metabolic obesity show reduced arginine bioavailability, reduced NO production, and asthma-like features. Reduced NO related bronchodilation and increased oxo-nitrosative stress may contribute to the pathogenesis.  相似文献   
2.
Herein, we demonstrate the efficacy of an unbiased proteomics screening approach for studying protein expression changes in the KC-Tie2 psoriasis mouse model, identifying multiple protein expression changes in the mouse and validating these changes in human psoriasis. KC-Tie2 mouse skin samples (n = 3) were compared with littermate controls (n = 3) using gel-based fractionation followed by label-free protein expression analysis. 5482 peptides mapping to 1281 proteins were identified and quantitated: 105 proteins exhibited fold-changes ≥2.0 including: stefin A1 (average fold change of 342.4 and an average p = 0.0082; cystatin A, human ortholog); slc25a5 (average fold change of 46.2 and an average p = 0.0318); serpinb3b (average fold change of 35.6 and an average p = 0.0345; serpinB1, human ortholog); and kallikrein related peptidase 6 (average fold change of 4.7 and an average p = 0.2474; KLK6). We independently confirmed mouse gene expression-based increases of selected genes including serpinb3b (17.4-fold, p < 0.0001), KLK6 (9-fold, p = 0.002), stefin A1 (7.3-fold; p < 0.001), and slc25A5 (1.5-fold; p = 0.05) using qRT-PCR on a second cohort of animals (n = 8). Parallel LC/MS/MS analyses on these same samples verified protein-level increases of 1.3-fold (slc25a5; p < 0.05), 29,000-fold (stefinA1; p < 0.01), 322-fold (KLK6; p < 0.0001) between KC-Tie2 and control mice. To underscore the utility and translatability of our combined approach, we analyzed gene and protein expression levels in psoriasis patient skin and primary keratinocytes versus healthy controls. Increases in gene expression for slc25a5 (1.8-fold), cystatin A (3-fold), KLK6 (5.8-fold), and serpinB1 (76-fold; all p < 0.05) were observed between healthy controls and involved lesional psoriasis skin and primary psoriasis keratinocytes. Moreover, slc25a5, cystatin A, KLK6, and serpinB1 protein were all increased in lesional psoriasis skin compared with normal skin. These results highlight the usefulness of preclinical disease models using readily-available mouse skin and demonstrate the utility of proteomic approaches for identifying novel peptides/proteins that are differentially regulated in psoriasis that could serve as sources of auto-antigens or provide novel therapeutic targets for the development of new anti-psoriatic treatments.One in three individuals in the United States is afflicted with a skin disease, with ∼2–3% of the American population suffering from psoriasis (13) a chronic, immune-mediated inflammatory skin disease characterized by well-demarcated areas of “involved” red, raised, and scaly skin adjacent to areas of “uninvolved” normal appearing skin. The underlying cause of psoriasis remains unknown and the specific signals that trigger disease onset have yet to be identified; however, several lines of evidence suggest the involvement of antigen-specific T cells, although the antigens involved remain elusive (4). A combination of human and animal studies have led to the understanding that in patients with a genetically susceptible background, some initiating stimulus, often a stressful event, an injury to the skin, or an infection, leads to a coordinated series of signaling events involving cytokines, resident skin cells, and skin-infiltrating immune cells, that once started, initiates a vicious pro-inflammatory hyperproliferative cycle. Once initiated, this cycle perpetuates sustained inflammatory responses. Intervention at several points in this cycle results in clinical resolution, however, durable remission and/or permanent clearance has not yet been achieved.Current psoriasis therapies are directed toward symptomatic relief and none of them represent a cure for this chronic illness. Current treatments include topical therapies, phototherapy, and systemic administration of immune-suppressants, anti-metabolites, oral retinoids, and biologics targeting immune cells or inflammatory cytokines (5, 6). Many of the most effective therapeutics however, also have the greatest adverse reactions; moreover, psoriasis can become resistant to specific therapies over time. Therefore, an ongoing need for discovery of new biological pathways and targets for psoriasis is obvious.We studied a mouse model of psoriasis using an unbiased proteomics screening approach to identify dysregulated peptides of interest in psoriasiform-inflamed mouse skin and ultimately compared these findings to psoriasis patient skin. We used in-gel label-free protein expression analysis to observe quantitative changes in protein expression. The peptides that were determined to be top-scoring from a statistical perspective and of biological interest were subjected to further analysis and confirmation using a targeted mass spectrometry approach along with qRT-PCR to assess gene expression in a distinct set of animal samples. Further validation of the translational importance of these novel proteins was then conducted in primary keratinocytes expanded from psoriasis skin as well as human skin taken directly from psoriasis patient lesional and nonlesional areas. The results of these experiments confirm the ability of a discovery in-gel label-free expression model to identify proteins that are in the moderate to high abundance range that are significantly different in their distribution between control and genetically modified psoriasiform mouse skin and demonstrate the usefulness of mouse models and proteomic approaches for identifying novel proteins that are differentially regulated in human psoriasis, providing future biomarkers and targets for development of translational approaches to disease improvement.  相似文献   
3.
Amyloid β (Aβ)-induced neurotoxicity is a major pathological mechanism of Alzheimer’s disease (AD). Our previous studies have demonstrated that schisandrin B (Sch B), an antioxidant lignan from Schisandra chinensis, could protect mouse brain against scopolamine- and cisplatin-induced neuronal dysfunction. In the present study, we examined the protective effect of Sch B against intracerebroventricular (ICV)-infused Aβ-induced neuronal dysfunction in rat cortex and explored the potential mechanism of its action. Our results showed that 26 days co-administration of Sch B significantly improved the behavioral performance of Aβ (1–40)-infused rats in step-through test. At the same time, Sch B attenuated Aβ-induced increases in oxidative and nitrosative stresses, inflammatory markers such as inducible nitric oxide syntheses, cyclooxygenase-2, interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and DNA damage. Several proteins such as receptor for advanced glycation end products (RAGE), nuclear factor-κB, mitogen-activated protein kinases, and apoptosis markers were over expressed in Aβ-infused rats but were significantly inhibited by Sch B treatment. Furthermore, Sch B negatively modulated the Aβ level with simultaneous up-regulation of HSP70 and beclin, autophagy markers in Aβ-infused rats. The aforementioned effects of Sch B suggest its protective role against Aβ-induced neurotoxicity through intervention in the negative cycle of RAGE-mediated Aβ accumulation during AD patho-physiology.  相似文献   
4.
5.
We report the picosecond and nanosecond timescale rotational dynamics of a dye-labeled DNA oligonucleotide or "aptamer" designed to bind specifically to immunoglobulin E. Rotational dynamics in combination with fluorescence lifetime measurements provide information about dye-DNA interactions. Comparison of Texas Red (TR), fluorescein, and tetramethylrhodamine (TAMRA)-labeled aptamers reveals surprising differences with significant implications for biophysical studies employing such conjugates. Time-resolved anisotropy studies demonstrate that the TR- and TAMRA-aptamer anisotropy decays are dominated by the overall rotation of the aptamer, whereas the fluorescein-aptamer anisotropy decay displays a subnanosecond rotational correlation time much shorter than that expected for the overall rotation of the aptamer. Docking and molecular dynamics simulations suggest that the low mobility of TR is a result of binding in the groove of the DNA helix. Additionally, associated anisotropy analysis of the TAMRA-aptamer reveals both quenched and unquenched states that experience significant coupling to the DNA motion. Therefore, quenching of TAMRA by guanosine must depend on the configuration of the dye bound to the DNA. The strong coupling of TR to the rotational dynamics of the DNA aptamer, together with the absence of quenching of its fluorescence by DNA, makes it a good probe of DNA orientational dynamics. The understanding of the nature of dye-DNA interactions provides the basis for the development of bioconjugates optimized for specific biophysical measurements and is important for the sensitivity of anisotropy-based DNA-protein interaction studies employing such conjugates.  相似文献   
6.
Pluripotent stem cells are capable of differentiating into all cell types of the body and therefore hold tremendous promise for regenerative medicine. Despite their widespread use in laboratories across the world, a detailed understanding of the molecular mechanisms that regulate the pluripotent state is currently lacking. Mouse embryonic (mESC) and epiblast (mEpiSC) stem cells are two closely related classes of pluripotent stem cells, derived from distinct embryonic tissues. Although both mESC and mEpiSC are pluripotent, these cell types show important differences in their properties suggesting distinct pluripotent ground states. To understand the molecular basis of pluripotency, we analyzed the nuclear proteomes of mESCs and mEpiSCs to identify protein networks that regulate their respective pluripotent states. Our study used label-free LC-MS/MS to identify and quantify 1597 proteins in embryonic and epiblast stem cell nuclei. Immunoblotting of a selected protein subset was used to confirm that key components of chromatin regulatory networks are differentially expressed in mESCs and mEpiSCs. Specifically, we identify differential expression of DNA methylation, ATP-dependent chromatin remodeling and nucleosome remodeling networks in mESC and mEpiSC nuclei. This study is the first comparative study of protein networks in cells representing the two distinct, pluripotent states, and points to the importance of DNA and chromatin modification processes in regulating pluripotency. In addition, by integrating our data with existing pluripotency networks, we provide detailed maps of protein networks that regulate pluripotency that will further both the fundamental understanding of pluripotency as well as efforts to reliably control the differentiation of these cells into functional cell fates.  相似文献   
7.
Edaravone, a novel antioxidant, acts by trapping hydroxyl radicals, quenching active oxygen and so on. Its cardioprotective activity against experimental autoimmune myocarditis (EAM) was reported. Nevertheless, it remains to be determined whether edaravone protects against cardiac remodelling in dilated cardiomyopathy (DCM). The present study was undertaken to assess whether edaravone attenuates myocardial fibrosis, and examine the effect of edaravone on cardiac function in rats with DCM after EAM. Rat model of EAM was prepared by injection with porcine cardiac myosin 28 days after immunization, we administered edaravone intraperitoneally at 3 and 10 mg/kg/day to rats for 28 days. The results were compared with vehicle-treated rats with DCM. Cardiac function, by haemodynamic and echocardiographic study and histopathology were performed. Left ventricular (LV) expression of NADPH oxidase subunits (p47(phox), p67(phox), gp91(phox) and Nox4), fibrosis markers (TGF-β(1) and OPN), endoplasmic reticulum (ER) stress markers (GRP78 and GADD 153) and apoptosis markers (cytochrome C and caspase-3) were measured by Western blotting. Edaravone-treated DCM rats showed better cardiac function compared with those of the vehicle-treated rats. In addition, LV expressions of NADPH oxidase subunits levels were significantly down-regulated in edaravone-treated rats. Furthermore, the number of collagen-III positive cells in the myocardium of edaravone-treated rats was lower compared with those of the vehicle-treated rats. Our results suggest that edaravone ameliorated the progression of DCM by modulating oxidative and ER stress-mediated myocardial apoptosis and fibrosis.  相似文献   
8.

Background

Development of model systems have helped to a large extent, in bridging gap to understand the mechanism(s) of disease including diabetes. Interestingly, WNIN/GR-Ob rats (Mutants), established at National Centre for Laboratory Animals (NCLAS) of National Institute of Nutrition (NIN), form a suitable model system to study obesity with Type 2 diabetes (T2D) demonstrating several secondary complications (cataract, cardiovascular complications, infertility, nephropathy etc). The present study has been carried out to explore the potent application(s) of multipotent stem cells such as bone marrow mesenchymal stem cells (BM-MSCs), to portray features of pre-diabetic/T2D vis-à-vis featuring obesity, with impaired glucose tolerance (IGT), hyperinsulinemia (HI) and insulin resistance (IR) seen with Mutant rats akin to human situation.

Methodology/Principal Findings

Primary cultures of BM-MSCs (third passage) from Mutants, its lean littermate (Lean) and parental control (Control) were characterized for: proliferation markers, disease memory to mark obesity/T2D/HI/IR which included phased gene expression studies for adipogenic/pancreatic lineages, inflammatory markers and differentiation ability to form mature adipocytes/Insulin-like cellular aggregates (ILCAs). The data showed that BM-MSCs from Mutant demonstrated a state of disease memory, depicted by an upregulated expression of inflammatory markers (IL-6, TNFα); increased stem cell recruitment (Oct-4, Sox-2) and proliferation rates (CD90+/CD29+, PDA, ‘S’ phase of cell cycle by FACS and BrdU incorporation); accelerated preadipocyte induction (Dact-1, PPARγ2) with a quantitative increase in mature adipocyte formation (Leptin); ILCAs, which were non-responsive to high glucose did confer the Obese/T2D memory in Mutants. Further, these observations were in compliance with the anthropometric data.

Conclusions

Given the ease of accessibility and availability of MSCs, the present study form the basis to report for the first time, application of BM-MSCs as a feasible in vitro model system to portray the disease memory of pre-clinical/T2D with IR - a major metabolic disorder of global concern.  相似文献   
9.
The first total synthesis of prasinic acid is being reported along with its biological evaluation. The ten step synthesis involved readily available and cheap starting materials and can easily be transposed to large scale manufacturing. The crucial steps of the synthesis included the formation of two different aromatic units (7 and 9) and their coupling reaction. The synthetic prasinic acid exhibited moderate antitumor activity (IC50 4.3–9.1 μM) in different lines of cancer cells.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号